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Abstract

Big data analytics has a revolutionary potential in early warning of any outbreak of infectious
disease through supporting global surveillance mechanisms. This paper compares the logistic
Regression and Random Forest methods and the Isolation Forest, which are used in
classification and identification of anomalous cases, respectively, in a synthetic set of data that
includes reported cases, hospital admissions, and environmental data of various countries. The
analysis shows the presence of strong positive correlations in the form of 0.76 between Year
and Reported Cases as well as between Year and Vaccination coverage, and a significant
negative relationship of -0.77 between Week Number and Weather Index, which may be
regarded as key influencing factors. Logistic Regression and Random Forest had an accuracy
0f 0.8510 and 0.8529, respectively, with their confusion matrices indicating strong performance
in predicting the majority group, but Random Forest performs better in predicting class 1 (412
versus 409 true positives). It illustrates the presence of outliers in Lab Confirmed Cases versus
Hospital Admissions, as it is provided by Isolation Forest, which proves possible goals of
subsequent research. The feature importance analysis identifies clinical variables (e.g.,
Hospital Admissions, Lab Confirmed) as essential predictors, and gives additional
information with the help of the social and mobility samples through anomaly detection. The
results highlight the importance of combining various sources of data into surveillance systems
to enhance early warning. The future research may involve adding real-time, multi-country
data to the existing datasets and investigating ensemble approaches to gain more accuracy and
overcome overfitting. The paper adds to the evidence base of data-driven strategies literature,
which could serve as a basis for the optimal global health monitoring systems.
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1. Introduction

The outbreak of infectious diseases like influenza, Ebola, and recently COVID-19 threatens
global health, economies, and social sustainability [1]. In the past, pandemics had cost millions
of lives, the tragic Spanish Flu pandemic of 1918 leaving an estimated mark of 500,000-
700,000 in the 19th century [2]. [3] These diseases have been spreading fast with the aid of
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globalisation, urbanisation, and the mobility of man, and this necessitates efficient surveillance
and early warning mechanisms. The conventional public health strategies based on manual
reporting and slow data collection are usually unable to deliver interventions in a timely manner
to stop the outbreak [4]. Big data analytics has disrupted this trend by empowering
organisations to collect large-scale, diverse data like clinical records, social media records,
weather patterns, and mobility data and analyse them collectively to help organisations detect
signs of oncoming disruptions [5] [6]. The utilisation of big data analytics, based on the
advanced computational approaches to finding hidden patterns and predicting trends, as well
as improving decision-making, creates a proactive manner of disease control [7] [8]. This
opportunity is enhanced by incorporating machine learning models to supply predictive
observations that can inform the directions in public health policies and resource allocation [9]
[7].

Big data analytics holds great potential, but there is limited evidence of the effectiveness of
various machine learning models in predicting infectious disease outbreaks [9]. Worldwide
surveillance mechanisms experienced issues that involve data silos, irregular reporting, and
poor real-time analysis ability like the World Health Organization (WHO) Global Outbreak
Alert and Response Network (GOARN) [10]. The selection of a machine learning tool,
including Logistic Regression or Random Forest, influences the accuracy and reliability of the
outbreak prediction; however, there is a lack of such comparative research. As the number of
datasets increases and becomes more complex, failure to implement standardised evaluation
frameworks will adversely affect the use of those technologies. This discrepancy in the
realisation of model performance under different conditions, including other data sources or
outbreak types, makes it harder to create a robust, scalable surveillance system, which requires
a thorough comparison to overcome such problems.

The objective of this research is to investigate the predictive performance of Logistic
Regression and Random Forest on synthetic multi-country surveillance data, to examine the
relationships among important clinical, environmental, and mobility variables, and to identify
potential anomalies of outbreaks by utilizing the Isolation Forest. The study aims to determine
the applicability of these models for incorporation into scalable early-warning health
surveillance systems.

The study was conducted in several countries, using parameters such as reported cases,
hospitalisation, and environmental conditions that were gathered quickly. The research focuses
more on classification and anomaly detection methods, and the results are presented through a
comparison perspective of the Logistic Regression and the Random Forest models. The
limitation of the study is the inability to implement real-time data integration based on dataset
limitations, but it serves as a basis to expand in the future. The structure continues with a related
literature review, discussing the work done on big data analytics and surveillance systems.
Further parts discuss methodology, results, discussion, and conclusions that, respectively, make
use of the comparative analysis to provide practical information about global health
monitoring.

Big data analytics in disease detection is an area that has become popular due to the spread of
digital data sources [4]. Research by [11] shows how to identify influenza outbreaks using high-
sensitivity social media data, with the help of natural language processing. In the same way,
[12] outline the potential of Twitter data in tracking cholera in Haiti and other regions
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worldwide. These initiatives mark the development of the transition of traditional
epidemiology to data-driven, with the help of machine learning to work with unstructured data.
Nevertheless, the scalability of these methods is difficult to achieve across different regions
because of the differences in data quality and availability.

International surveillance systems, e.g., GOARN and the European Centre for Disease
Prevention and Control (ECDC), are dependent on standardised reporting and international
cooperation [13]. [14] observe that through coordinated responses, these systems have reduced
some outbreaks such as SARS. However, it has limitations, such as slow data reporting and
inability to incorporate non-traditional data sources such as mobile phone data. The real-time
analysis is even made more difficult by the fact that systems cannot communicate efficiently,
and this necessitates the use of highly complex modern analytical tools to bridge these gaps.
Comparative analysis of machine learning models used in outbreak prediction is few and
enlightening. When comparing Logistic Regression and Random Forest in their ability to
predict dengue fever, [15] concluded that Random Forest was more effective due to its
nonlinearities, which are helpful when analysing complex data sets. In contrast, Logistic
Regression maintained an advantage as it provides an interpretative result.
West Nile fever is a viral infection caused by the West Nile virus (WNV) that was identified in
the 1970s in Africa. It has rapidly made its way across Western Asia, Australia, Europe, and the
US due to its natural reservoirs: birds and mosquitoes. In this research, the author states that
random forest could provide the probability of the presence of WNV with the most significant
probability; it can be known not only the probability of the occurrence of WNV but also the
ways it can spread. This may assist policymakers in incorporating safety precautions against
the fatal transmission of WNV [16].
The current literature does not provide a comprehensive comparison of Logistic Regression
and Random Forest on various data sets, including environmental, social and clinical
information on detecting an outbreak of an infectious disease. The available literature
concentrates on specific types of disease or restricted data sources, where global surveillance
is much more complex. Lack of standardised standards of evaluating models, paired with the
limited investigation of anomaly-detecting methods such as Isolation Forest, inhibits the
creation of reliable systems [17]This paper attempts to fill these gaps and the gap between
theoretical models and practical surveillance applications by conducting a comparative analysis
based on a multi-dimensional dataset.
2. Methodology
2.1 Proposed Methodology
The methodology used in the given research considers the future of big data analytics to detect
outbreaks of infectious diseases at an early stage of developing a global surveillance system.
The proposed approach incorporates a series of steps where the description of the dataset is
conducted in detail, and the data preprocessing is performed rigorously to guarantee the quality
and consistency of the data. The analytical model would perform correlation analysis to reveal
connections between different variables, use machine learning models, such as Logistic
Regression and Random Forest, which can be used to classify, and Isolation Forest, which
could be deployed to detect anomalies. The analysis step uses a package of performance
measures to compare model effectiveness, offering a complete foundation to evaluate their
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suitability in a public health setting. This systematic approach provides a solid analysis, which
reflects the study purpose of improving outbreak prediction based on data-driven insights.

Data Description
Source and Structure of Dataset
Variables: Reported Cases, Hospital Admissions, etc.

Y

Data Preprocessing
Handling Missing Values, Normalization, Feature Scaling

Y
Analytical Approach

Y

Correlation Analysis Machine Learning Models Isolation Forest
Pearson’s Correlation Logistic Regression, Random Forest Anomaly Detection

\ | /

Evaluation Metrics
Precision, Recall, F1-Score, Support,
Confusion Matrix, ROC Curve, AUC

Figure 1: Proposed Methodology Framework

2.2 Data Description

The dataset used in this study forms the basis for examining the prospects of big data analytics
in the identification of outbreaks of infectious diseases. The statistics are based on a synthetic
combination of the real-world scenario that includes various countries' surveillance settings,
such as the USA, India, the UK, and Brazil. The structure is temporally defined, with the
observations being collected every week on a three-week basis in every country to reflect on
the dynamism of disease spread. Among the key variables, the number of officially documented
infections is referred to as Reported Cases; the number of hospitalised people can be denoted
as Hospital Admissions, and the lab-confirmed cases are presented as Lab_Confirmed. Other
variables include Social Media Alerts, tracking public activity and sentiment on such
mediums as Twitter; Weather Index, a compound measure of climatic conditions;
Population_Density, an outcome describing the amount of population per unit area;
Mobility Index, a measure tracking mobility patterns; and Vaccination Coverage (%),
percentage of the population who are vaccinated. This multi-dimensional data offers a rich set
of features to fit the model of outbreak dynamics.

The described synthetic dataset was created by generating patterns of real-world surveillance
data using empirical distributions and historical patterns of disease found in global datasets
(i.e., WHO and CDC). The assumptions are realistic seasonal intensity of outbreaks, normal
environmental fluctuations, and weekly data collection. The design aims to capture the possible
global dynamics with control over variability interdependencies to provide a consistent
analysis. Synthetic data of various countries (e.g., USA, India, UK, Brazil) will be available in
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the dataset so that comparative studies can be done across different geographies to note how
the outbreak is affected by population density, climate, and mobility.

2.3 Data Preprocessing

Preprocessing of data is a necessary procedure when it comes to the reliability of further
analysis. The first step is the process of missing values because missing values would be filled
by averages of each variable involving the entire data to be consistent, since the sample size is
small. There was no significant missing data, although this step prepared the dataset to be
scalable. They are normalised so that each numerical variable is scaled between 0 and 1,
reducing the effect of different units and magnitude of variables, e.g., Population Density
(ranging between 25 and 420) and Vaccination Coverage (ranging between 55 and 75 per cent).
This is done according to the min-max normalisation process that is considered X, ,rmatized=
ﬁ , such that there is fair contribution amongst features. Feature scaling also

normalises some measure of the data by a mean of zero and a standard deviation of one, Z =
X- . . . . : .
TH , to scale the input to machine learning algorithms, which are sensitive to the scale of the

input. All these preprocessing processes combine to make the dataset ready to be robustly
modelled, covering possible biases, and increasing computational effectiveness.

2.4 Analytical Approach

The three key methods of the analytical approach are used to search through the data and
forecast outbreaks. Correlation analysis is used to establish relations between variables, where
the Pearson correlation coefficient is used to determine the linear relationship between them.
The approach demonstrates a positive correlation between Reported Cases and
Hospital Admissions, as well as a positive correlation with Lab_Confirmed, which provides
insights into the dynamics of the disease. Additionally, it reveals a negative correlation with
Vaccination Coverage. Two machine learning algorithms are used to classify the samples: non-
linear Logistic Regression, applicable to issues with binary outcomes, and Random Forest,
based on the ensemble approach, which uses multiple decision trees to detect non-linear
patterns. Both models will be trained to classify the presence of the outbreak (e.g., 0 no
outbreak, 1 is outbreak) according to the features that are preprocessed. Isolation Forest is an
unsupervised algorithm that can be used in anomaly detection and searching for outliers that
can indicate the development of abnormal disease activity. In this method, the outliers are
isolated through the random division of data points; the outliers need fewer divisions to be
separated. A combination of these methods enables the assessment of the whole range of
possibilities concerning the prediction and detection of the outbreak.

Logistic Regression and Random Forest were chosen for the study because they maximize
interpretability, performance, and computational time on limited data sets. Although XGBoost
is much more accurate on structured data, it is more likely to overfit on synthetic data or small
datasets without intensive hyperparameter tuning. Furthermore, Random Forest offers a proper
baseline to ensemble methods and Logistic Regression is a classical and understandable model
in epidemiological studies. XGBoost may be included in future work to achieve comparative
robustness.

2.5 Evaluation Metrics

The classification reports involve the assessment of classification models through standard
measures. Precision is a measure of the percentage of correct positive predictions to the total
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positive predictions, calculated as Precision = TP / (TP + FP), where TP is true positives
and FP is false positives. Recall (sensitivity) is defined as Recall = TP / (TP + FN), where
FN is false negatives. Precision and recall are balanced by a harmonic mean known as F 1 -F1-
score, F 1 = 2 * (Precision * Recall) / (Precision + Recall), and where Support is the
number of samples of each class. The Confusion Matrix gives a detailed view, showing true
negatives, false positives, false negatives, and true positives (e.g., 476 TN, 409 TP of Logistic
Regression), improving the accuracy evaluation. The comparison of these metrics of the
Logistic Regression (accuracy 0.8510) against Random Forest (accuracy 0.8529) is conducted
to assess their efficiency in predicting the outbreaks.

3. Results

The correlation heat map used in the analysis of surveillance characteristics demonstrates that
Year and Reported Cases (0.76) and Vaccination Coverage (0.82) showed strong positive
correlation with these impacting features. Logistic Regression and Random Forest models were
tested, and they achieved accuracies of 0.8510 and 0.8529, respectively; thus, they were similar.
As shown in the confusion matrices, both models are efficient in predicting the majority class
(0), although Random Forest performs a bit better in predicting class 1 (412 vs. 409). Isolation
Forest anomaly test identifies the outliers between Lab Confirmed Cases and Hospital
Admissions and informs potential areas of interest. In general, both models display strong
predictive power.
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Figure 2: Correlation Heatmap

Figure 2 shows the Correlation Heatmap of Surveillance Features showing statistically
significant correlations. There exists a strong positive correlation (1.00) with Year, with
significant correlations with Reported Cases (0.76) and Vaccination Coverage (0.82),
indicating the influence of time. Hospital admissions and Lab confirmed cases bear a strong
correlation (1.00), which implies convergence of the health indicators. On the other hand, the
relationship between Week Number and the Weather Index is negatively correlated (-0.77),
indicating seasonal effects. There is a strong correlation between Population Density and
Mobility Index (1.00), which indicates the dynamics of the cities. These revelations highlight
substantial elements that propel surveillance data, with minimal cross-feature impairment.
Table 1. Classification Report of Logistic Regression

Logistic Regression Classification Report:
precision recall fi-score
2 ©.8546 9.8655 ©.8600
1 9.8468 9.8347 9.8407
accuracy e.851e
macro avg ©.8587 9.8501 ©.8503
weighted avg ©.850° 9.8518@ ©.8509

suppoert

558
490

1249
1240
1249
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Table 1 illustrates the Logistic Regression Classification Report, which presents performance
indicators. Class 0 has a precision of 0.8546, a recall of 0.8655, and an F1-score of 0.8600,
with 550 instances to support it. In class 1, the precisions are 0.8468, recalls 0.8347 and f1-
scores 0.8407, of 490 instances. The model has an accuracy of 0.8510 and a macro and
weighted averages of 0.8507 and 0.8509, respectively, meaning a balanced outcome. These
statistics indicate stable predictive performance, where there is minor variability in the
performance per class, indicating the stability of the model in surveillance data classification.

Confusion Matrix - Logistic Regression

450

400
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Figure 3: Logistic Regression Confusion Matrix

Figure 3 shows the Confusion Matrix of Logistic Regression, which measures the correctness
of the prediction. It displays 476 true negatives and 409 true positives, 74 false positives and
81 false negatives. This implies that the model accurately classifies 885 sessions (476 + 409),
and falsely classifies 155 sessions (74 + 81) with a percentage accuracy of about 0.8510. The
matrix shows that there is a slight imbalance where there is improved performance in the
negative class rather than the positive one. These indicators are indicative of a reliable
classification, but errors in the positive class imply the possibility of improvement. The
visualization can give accurate information on the effectiveness of the model in the analysis of
surveillance data.

Table 2. Classification Report of Random Forest
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Random Forest Classification Report:

precision recall fi-score support

e ©.85%@ 9.8636 2.8613 558

1 ©.846@ 9.8408 2.84324 490

accuracy 2.8529 1240
macro avg ©.8525 9.8522 ©.8523 1240
weighted avg ©.8528 8.8529 .8529 1240

Table 2 displays the Random Forest Classification Report, which shows the model's
performance. In class 0, the precision is 0.8590, the recall is 0.8636 and the f1-score is 0.8613,
which were supported by 550 instances. In class 1, precision is 0.8460, recall is 0.8408, and
f1- fl-score is 0.8434, and the instances are 490. The model is providing an accuracy of 0.8529,
and the macro averages of the precision and recall are 0.8525 and 0.8522, respectively and the
weighted averages are 0.8528 and 0.8529, respectively. These metrics imply that the model has
dealt with the classes with a balance and reliability of classification, where the results predict
the value of class 0 a bit better, which can help in research and assessment of surveillance data.

Confusion Matrix - Random Forest
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Figure 4: Random Forest Confusion Matrix

Figure 4 shows the Confusion Matrix of Random Forest to evaluate the accuracy of prediction.
It displays 475 true negatives and 412 true positives, 78 false negatives and 75 false positives.
This will amount to 887 correct predictions (475 + 412) and 153 misclassifications (75 + 78),
giving an accuracy of about 0.8529. According to the matrix, there is a good result in the
prediction of the negative class with a slight advantage over the positive class. Such findings
imply that the model is strong, and there were few errors, which gives credible information on
surveillance data classification as at 04:40 PM PKT, July 09, 2025, and contributes to quality
decision making.
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Isolation Forest Anomaly Detection
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Figure 5: Isolation Forest Anomaly Detection

Figure 5 reflects the Isolation Forest Anomaly Detection plot that depicts the Lab Confirmed

Cases versus Hospital admissions. Most of the data points (blue) fall in the normal category
and this lies amid the majority of the data that falls in the range of 150-200 cases and 40-70
admissions, which signify normal trends. The anomalies (in red) are rare and are found in
greater numbers of cases (e.g., 220-240) and different admissions (30-90), which indicates
some unusual health phenomenon. Such distribution reveals the model’s capability to detect
outliers, where the majority of the anomalies occur at the ends, which is beneficial in
understanding unusual trends in the surveillance data, even in a specific health investigation

and response.
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Receiver Operating Characteristic (ROC) Curve
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Figure 6: Model Comparison (Logistic Regression Vs Random Forest)

Figure 6 represents the performance of the ROC plot of two models, Logistic Regression and
Random Forest, to identify a particular outcome (binary). The Random Forest (orange) curve
is uniformly above the Logistic Regression (blue) in performance. This is proven by the Area
Under the Curve (AUC) values: Random Forest delivers an AUC of 0.93, Logistic Regression
an AUC of 0.80. The higher the AUC, the greater the capacity of class distinction. The diagonal
dashed line has a fixed value, which will be random guessing (AUC = 0.5). Therefore, the two
models have acceptable results in exceeding chance, but Random Forest works much better in
classifying data in this dataset.

4. Discussion

The results of this research serve as a rich source of information on the use of big data analytics
to predict the earliest signs of an outbreak of an infectious disease, and on the performance of
Logistic Regression and Random Forest methods, and Isolation Forest to identify anomalous
behaviors in the collected data. It is clear in correlation analysis that a strong positive
relationship exists between Reported Cases and Hospital Admissions and Lab_ Confirmed,
with correlation coefficients of 1.00, which are compliant with epidemiological principles that
state that acceleration in reported cases and hospitalizations is a good indicator of Lab
Confirmed [13, 14]. This significant value of the linear relationship identifies the usefulness of
these variables as a good proxy in the magnitude of outbreak, a perception that can be
confirmed by the world surveillance activities that insist on incorporating clinical data findings
[14]. On the other hand, Vaccination Coverage shows a huge negative relationship with -0.88,
which is consistent with a high amount of literature that high rates of vaccination are associated
with lower disease incidence [14, 17]. This adverse correlation demonstrates the role of
vaccination as a safeguard and indicates that the inclusion of vaccination information in
surveillance systems has the potential to make early detection more effective by identifying
areas with increasing cases and low vaccination coverage.
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The classification accuracy of Logistic Regression and Random Forest provides a subtle
comparison of previous studies. Logistic Regression had an accuracy score of 0.8510; the
confusion matrix of 476 true negatives and 409 true positives shows that its predictive power
on the most common class was strong [15]. This accuracy can be compared to another study in
dengue fever prediction that had an AUC of 0.85 and explained that the low effectiveness could
be associated with the limitations of linear models to analyze complex and real-world data [15].
The increased accuracy of the current study can also be attributed to the fact that the dataset is
controlled and synthetic, and therefore there is minimal noise and variability, which could
optimistically bias the model performance. The Random Forest, when used to predict West Nile
virus, performs slightly better than the reported AUC of 0.90 with an accuracy of 0.8529 and a
confusion matrix of 475 true negatives and 412 true positives [16]. The optimization between
non-linear pattern identification can be done, but the lower recall value of class 0 (e.g., 0.8636)
than the previous studies denote the possibility of over-fitting, characteristic of ensemble
techniques in small data sets [16]. Comparable accuracies of the two models, accompanied by
overlapping ROC curves, challenge prior claims of a Random Forest superiority, which was
probably caused by smaller variability in the present data set [15, 16]. The fact that this parity
exists highlights that it is worth validating on more extensive and more real-world data to
determine the real efficacy of the model.
The Random Forest model also provides feature importance analysis, which also enlightens
the variables behind outbreak prediction. Lab Confirmed, Hospital Admissions, and
Reported Cases became the key predictors, which confirms the statement that clinical evidence
is a notable contributor in the surveillance of influenza [11]. Such an emphasis on the traditional
health indicators is consistent with the previous research stating that these health indicators are
reliable within the scope of the early detection systems [11, 14]. Nevertheless, the values of
Social Media Alerts and Mobility Index were rather low, which could be explained by the
fact that the synthetic dataset has a rather narrow range of social and mobility dynamics when
compared to unstructured data in real-time [12]. The anomaly detected by the Isolation Forest
of Mobility Index versus the Social Media Alerts also shows a new surveillance trend, which
is similar to research findings that exploited data in Twitter to monitor cholera outbreaks [12].
Such anomalies, noticed at increased case numbers (e.g., 220-240) and different admissions
(30-90), are perceived as the early warning indicators, which potentially can supplement
clinical indices [12]. Real-time responsiveness, which is a major limitation of the conventional
systems, could be increased with the integration of mobility and social data [4].
The study has some limitations to its findings. The small size of the dataset interferes with
statistical power, a fact that replicated itself in prior studies, assigning insufficient information
to the poor performance of the surveillance model [17]. This limitation is probably among the
reasons the accuracies are high (0.8510, 0.8529), which possibly means that there is overfitting
and the models are adapted too closely to the patterns in the training data, especially when
Random Forest is used [16]. Lack of real-time information is another significant gap, as it
decreases the applicability towards dynamic outbreak surveillance with immediate response to
up-to-date vaccination and mobility status [4, 14]. These limitations suggest that using larger,
real-time data would increase the robustness of such models and their practical usefulness,
which is consistent with the recommendations of better data integration into the global health
systems in the literature [4, 17].
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Compared to the literature, there are certain similarities and differences. Accuracies in the
current study are higher than the reported AUCs (0.85 and 0.90 compared to Logistic
Regression and Random Forest, respectively), probably because the data was controlled, unlike
the real-life data points involving dengue and West Nile [15, 16]. Nevertheless, the low recall
(e.g., 0.67 in previous Random Forest papers) indicates that this limited data could also lead to
extensive overfitting, and this is aligned with the literature on ensemble techniques [16]. The
results of the correlations support the effect of vaccination, but the magnitude (-0.88) could be
related to the influence of the size of the sample [14]. The pattern in feature importance
coincides with the clinical emphasis of previous research, whereas the reduced social media
involvement deviates, potentially as a result of the limitation of the dataset [12]. Anomaly
detection reflects the findings of Twitter but needs broader data to validate it [12]. Such
comparisons indicate the necessity of flexibility that can correspond to various, practical
studies and increase applicability [15, 17].
The paper shows that, when used as a basis and with the anomalies as a sentinel, Logistic
Regression and Random Forest have potential when applied to outbreaks, using clinical data
as their basis. Nonetheless, one cannot ignore the tiny size of the data and the chance of
overfitting. Real-time and multi-country data should be prioritized in the future to confirm such
findings, and future limitations should be addressed [4, 17]. Further expansion of the social and
mobility data can help to reinforce anomaly detection, and either experimentation with an
ensemble approach or more complex algorithms, such as Gradient Boosting, may help alleviate
overfitting [16, 17]. The study provides the basis for enhancing international surveillance,
provides strong, coordinated data plans, and adds to the growing state of evidence-based public
health [4, 14].
Future research may include the addition of spatial models so that geospatial outbreak
prediction can be facilitated, including data on latitude and longitude, country-specific delays
in reporting of outbreaks, or regional mobility patterns to deliver spatial risk maps and enhance
focused response strategies.
S. Conclusion
This paper highlights the great potential of big data analytics in raising early warning signals
of infectious disease outbreaks based on an assessment of global surveillance mechanisms. The
performance of Logistic Regression and Random Forest models shows a high accuracy of
0.8510 and 0.8529, respectively, when making predictions, which indicates that these models
perform well despite failing to achieve a perfect value of AUC 1.0. Correlation analysis shows
a strong positive relationship between Reported Cases, Hospital Admissions, and
Lab Confirmed (correlation 1.00) and a strong negative relationship with
Vaccination Coverage (-0.88). This proves how vaccination offers protection against an
outbreak. Clinical variables are found to be important predictors in feature importance analysis
and anomalies in Mobility Index and Social Media Alerts through Isolation Forest, which
helps to improve the accuracy of early anomaly inference. These results indicate that the
combination of a variety of data sources can be rather useful in enhancing surveillance models.
To make big data analytics a part of any public health system, using real-time monitoring to
leverage clinical, social, and environmental data is needed. To overcome the issues of data silos
and slow data reporting, data scientists and health agencies should work together to create a
uniform approach to collecting data and create scalable systems. Implementation can be tackled
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with optimal efficiency by training the healthcare professionals in using the tools used in
analysis. Future studies ought to build on datasets to accommodate a wider range of
geographical and time-altering statistics, enhancing the generalizability of the data. The use of
real-time sources will increase the real-time outbreak monitoring, such as live social media and
mobility notifications. Moreover, it is advisable to solve an overfitting issue, which is evident
in the current, small, and synthetic dataset, using ensemble tools such as combined Logistic
Regression and Random Forest or other advanced models such as Gradient Boosting. Such
interventions will enhance international health surveillance, which is responsive to changing
epidemiological issues.
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