
 

 1608 

EXAMINING THE POTENTIAL OF BIG DATA ANALYTICS FOR EARLY 
DETECTION OF INFECTIOUS DISEASE OUTBREAKS: A COMPREHENSIVE 

REVIEW OF GLOBAL SURVEILLANCE SYSTEMS 
 

Md Shafiqul Islam1* Amir Hamza Akash2, Md Rashedul Bari3, Md Ariful Islam4, 
Mohammad Nowsher Ali5 

Computer Science, Maharishi International University, Fairfield, IA, USA1* Mathematical 
Science, University of Arkansas, USA2,4, Computer Science, Maharishi International 

University, Fairfield, IA, USA3, Computer Science, Maharishi International University, 
Fairfield, IA, USA5 

*Corresponding Author Email: shafiqswh@gmail.com 
Abstract 
Big data analytics has a revolutionary potential in early warning of any outbreak of infectious 
disease through supporting global surveillance mechanisms. This paper compares the logistic 
Regression and Random Forest methods and the Isolation Forest, which are used in 
classification and identification of anomalous cases, respectively, in a synthetic set of data that 
includes reported cases, hospital admissions, and environmental data of various countries. The 
analysis shows the presence of strong positive correlations in the form of 0.76 between Year 
and Reported Cases as well as between Year and Vaccination coverage, and a significant 
negative relationship of -0.77 between Week Number and Weather Index, which may be 
regarded as key influencing factors. Logistic Regression and Random Forest had an accuracy 
of 0.8510 and 0.8529, respectively, with their confusion matrices indicating strong performance 
in predicting the majority group, but Random Forest performs better in predicting class 1 (412 
versus 409 true positives). It illustrates the presence of outliers in Lab Confirmed Cases versus 
Hospital Admissions, as it is provided by Isolation Forest, which proves possible goals of 
subsequent research. The feature importance analysis identifies clinical variables (e.g., 
Hospital_Admissions, Lab_Confirmed) as essential predictors, and gives additional 
information with the help of the social and mobility samples through anomaly detection. The 
results highlight the importance of combining various sources of data into surveillance systems 
to enhance early warning. The future research may involve adding real-time, multi-country 
data to the existing datasets and investigating ensemble approaches to gain more accuracy and 
overcome overfitting. The paper adds to the evidence base of data-driven strategies literature, 
which could serve as a basis for the optimal global health monitoring systems. 
Keywords: Big Data Analytics, Infectious Disease Outbreaks, Early Detection, Global 
Surveillance Systems, Logistic Regression, Random Forest, Anomaly Detection, ROC Curve 
Analysis, Public Health 
1. Introduction 
The outbreak of infectious diseases like influenza, Ebola, and recently COVID-19 threatens 
global health, economies, and social sustainability [1]. In the past, pandemics had cost millions 
of lives, the tragic Spanish Flu pandemic of 1918 leaving an estimated mark of 500,000-
700,000 in the 19th century [2]. [3] These diseases have been spreading fast with the aid of 
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globalisation, urbanisation, and the mobility of man, and this necessitates efficient surveillance 
and early warning mechanisms. The conventional public health strategies based on manual 
reporting and slow data collection are usually unable to deliver interventions in a timely manner 
to stop the outbreak [4]. Big data analytics has disrupted this trend by empowering 
organisations to collect large-scale, diverse data like clinical records, social media records, 
weather patterns, and mobility data and analyse them collectively to help organisations detect 
signs of oncoming disruptions [5] [6]. The utilisation of big data analytics, based on the 
advanced computational approaches to finding hidden patterns and predicting trends, as well 
as improving decision-making, creates a proactive manner of disease control [7] [8]. This 
opportunity is enhanced by incorporating machine learning models to supply predictive 
observations that can inform the directions in public health policies and resource allocation [9] 
[7]. 
Big data analytics holds great potential, but there is limited evidence of the effectiveness of 
various machine learning models in predicting infectious disease outbreaks [9]. Worldwide 
surveillance mechanisms experienced issues that involve data silos, irregular reporting, and 
poor real-time analysis ability like the World Health Organization (WHO) Global Outbreak 
Alert and Response Network (GOARN) [10]. The selection of a machine learning tool, 
including Logistic Regression or Random Forest, influences the accuracy and reliability of the 
outbreak prediction; however, there is a lack of such comparative research. As the number of 
datasets increases and becomes more complex, failure to implement standardised evaluation 
frameworks will adversely affect the use of those technologies. This discrepancy in the 
realisation of model performance under different conditions, including other data sources or 
outbreak types, makes it harder to create a robust, scalable surveillance system, which requires 
a thorough comparison to overcome such problems. 
The objective of this research is to investigate the predictive performance of Logistic 
Regression and Random Forest on synthetic multi-country surveillance data, to examine the 
relationships among important clinical, environmental, and mobility variables, and to identify 
potential anomalies of outbreaks by utilizing the Isolation Forest. The study aims to determine 
the applicability of these models for incorporation into scalable early-warning health 
surveillance systems.  
The study was conducted in several countries, using parameters such as reported cases, 
hospitalisation, and environmental conditions that were gathered quickly. The research focuses 
more on classification and anomaly detection methods, and the results are presented through a 
comparison perspective of the Logistic Regression and the Random Forest models. The 
limitation of the study is the inability to implement real-time data integration based on dataset 
limitations, but it serves as a basis to expand in the future. The structure continues with a related 
literature review, discussing the work done on big data analytics and surveillance systems. 
Further parts discuss methodology, results, discussion, and conclusions that, respectively, make 
use of the comparative analysis to provide practical information about global health 
monitoring. 
Big data analytics in disease detection is an area that has become popular due to the spread of 
digital data sources [4]. Research by [11] shows how to identify influenza outbreaks using high-
sensitivity social media data, with the help of natural language processing. In the same way, 
[12] outline the potential of Twitter data in tracking cholera in Haiti and other regions 
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worldwide. These initiatives mark the development of the transition of traditional 
epidemiology to data-driven, with the help of machine learning to work with unstructured data. 
Nevertheless, the scalability of these methods is difficult to achieve across different regions 
because of the differences in data quality and availability. 
International surveillance systems, e.g., GOARN and the European Centre for Disease 
Prevention and Control (ECDC), are dependent on standardised reporting and international 
cooperation [13]. [14] observe that through coordinated responses, these systems have reduced 
some outbreaks such as SARS. However, it has limitations, such as slow data reporting and 
inability to incorporate non-traditional data sources such as mobile phone data. The real-time 
analysis is even made more difficult by the fact that systems cannot communicate efficiently, 
and this necessitates the use of highly complex modern analytical tools to bridge these gaps. 
Comparative analysis of machine learning models used in outbreak prediction is few and 
enlightening. When comparing Logistic Regression and Random Forest in their ability to 
predict dengue fever, [15] concluded that Random Forest was more effective due to its 
nonlinearities, which are helpful when analysing complex data sets. In contrast, Logistic 
Regression maintained an advantage as it provides an interpretative result.  
West Nile fever is a viral infection caused by the West Nile virus (WNV) that was identified in 
the 1970s in Africa. It has rapidly made its way across Western Asia, Australia, Europe, and the 
US due to its natural reservoirs: birds and mosquitoes. In this research, the author states that 
random forest could provide the probability of the presence of WNV with the most significant 
probability; it can be known not only the probability of the occurrence of WNV but also the 
ways it can spread. This may assist policymakers in incorporating safety precautions against 
the fatal transmission of WNV [16]. 
The current literature does not provide a comprehensive comparison of Logistic Regression 
and Random Forest on various data sets, including environmental, social and clinical 
information on detecting an outbreak of an infectious disease. The available literature 
concentrates on specific types of disease or restricted data sources, where global surveillance 
is much more complex. Lack of standardised standards of evaluating models, paired with the 
limited investigation of anomaly-detecting methods such as Isolation Forest, inhibits the 
creation of reliable systems [17]This paper attempts to fill these gaps and the gap between 
theoretical models and practical surveillance applications by conducting a comparative analysis 
based on a multi-dimensional dataset. 
2. Methodology 

2.1 Proposed Methodology 
The methodology used in the given research considers the future of big data analytics to detect 
outbreaks of infectious diseases at an early stage of developing a global surveillance system. 
The proposed approach incorporates a series of steps where the description of the dataset is 
conducted in detail, and the data preprocessing is performed rigorously to guarantee the quality 
and consistency of the data. The analytical model would perform correlation analysis to reveal 
connections between different variables, use machine learning models, such as Logistic 
Regression and Random Forest, which can be used to classify, and Isolation Forest, which 
could be deployed to detect anomalies. The analysis step uses a package of performance 
measures to compare model effectiveness, offering a complete foundation to evaluate their 
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suitability in a public health setting. This systematic approach provides a solid analysis, which 
reflects the study purpose of improving outbreak prediction based on data-driven insights. 

 
Figure 1: Proposed Methodology Framework 
2.2 Data Description 
The dataset used in this study forms the basis for examining the prospects of big data analytics 
in the identification of outbreaks of infectious diseases. The statistics are based on a synthetic 
combination of the real-world scenario that includes various countries' surveillance settings, 
such as the USA, India, the UK, and Brazil. The structure is temporally defined, with the 
observations being collected every week on a three-week basis in every country to reflect on 
the dynamism of disease spread. Among the key variables, the number of officially documented 
infections is referred to as Reported_Cases; the number of hospitalised people can be denoted 
as Hospital_Admissions, and the lab-confirmed cases are presented as Lab_Confirmed. Other 
variables include Social_Media_Alerts, tracking public activity and sentiment on such 
mediums as Twitter; Weather_Index, a compound measure of climatic conditions; 
Population_Density, an outcome describing the amount of population per unit area; 
Mobility_Index, a measure tracking mobility patterns; and Vaccination_Coverage (%), 
percentage of the population who are vaccinated. This multi-dimensional data offers a rich set 
of features to fit the model of outbreak dynamics. 
The described synthetic dataset was created by generating patterns of real-world surveillance 
data using empirical distributions and historical patterns of disease found in global datasets 
(i.e., WHO and CDC). The assumptions are realistic seasonal intensity of outbreaks, normal 
environmental fluctuations, and weekly data collection. The design aims to capture the possible 
global dynamics with control over variability interdependencies to provide a consistent 
analysis. Synthetic data of various countries (e.g., USA, India, UK, Brazil) will be available in 
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the dataset so that comparative studies can be done across different geographies to note how 
the outbreak is affected by population density, climate, and mobility. 
2.3 Data Preprocessing 
Preprocessing of data is a necessary procedure when it comes to the reliability of further 
analysis. The first step is the process of missing values because missing values would be filled 
by averages of each variable involving the entire data to be consistent, since the sample size is 
small. There was no significant missing data, although this step prepared the dataset to be 
scalable. They are normalised so that each numerical variable is scaled between 0 and 1, 
reducing the effect of different units and magnitude of variables, e.g., Population_Density 
(ranging between 25 and 420) and Vaccination_Coverage (ranging between 55 and 75 per cent). 
This is done according to the min-max normalisation process that is considered 𝑋!"#$%&'()*= 
+,	+!"#

+!$%,+!"#
 , such that there is fair contribution amongst features. Feature scaling also 

normalises some measure of the data by a mean of zero and a standard deviation of one, 𝑍 =
	+,.
/
	, to scale the input to machine learning algorithms, which are sensitive to the scale of the 

input. All these preprocessing processes combine to make the dataset ready to be robustly 
modelled, covering possible biases, and increasing computational effectiveness. 
2.4 Analytical Approach 
The three key methods of the analytical approach are used to search through the data and 
forecast outbreaks. Correlation analysis is used to establish relations between variables, where 
the Pearson correlation coefficient is used to determine the linear relationship between them. 
The approach demonstrates a positive correlation between Reported_Cases and 
Hospital_Admissions, as well as a positive correlation with Lab_Confirmed, which provides 
insights into the dynamics of the disease. Additionally, it reveals a negative correlation with 
Vaccination_Coverage. Two machine learning algorithms are used to classify the samples: non-
linear Logistic Regression, applicable to issues with binary outcomes, and Random Forest, 
based on the ensemble approach, which uses multiple decision trees to detect non-linear 
patterns. Both models will be trained to classify the presence of the outbreak (e.g., 0 no 
outbreak, 1 is outbreak) according to the features that are preprocessed. Isolation Forest is an 
unsupervised algorithm that can be used in anomaly detection and searching for outliers that 
can indicate the development of abnormal disease activity. In this method, the outliers are 
isolated through the random division of data points; the outliers need fewer divisions to be 
separated. A combination of these methods enables the assessment of the whole range of 
possibilities concerning the prediction and detection of the outbreak. 
Logistic Regression and Random Forest were chosen for the study because they maximize 
interpretability, performance, and computational time on limited data sets. Although XGBoost 
is much more accurate on structured data, it is more likely to overfit on synthetic data or small 
datasets without intensive hyperparameter tuning. Furthermore, Random Forest offers a proper 
baseline to ensemble methods and Logistic Regression is a classical and understandable model 
in epidemiological studies. XGBoost may be included in future work to achieve comparative 
robustness. 
2.5 Evaluation Metrics 
The classification reports involve the assessment of classification models through standard 
measures. Precision is a measure of the percentage of correct positive predictions to the total 
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positive predictions, calculated as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	𝑇𝑃	/	(𝑇𝑃	 + 	𝐹𝑃), where TP is true positives 
and FP is false positives. Recall (sensitivity) is defined as 𝑅𝑒𝑐𝑎𝑙𝑙 = 	𝑇𝑃	/	(𝑇𝑃	 + 	𝐹𝑁), where 
FN is false negatives. Precision and recall are balanced by a harmonic mean known as F 1 -F1-
score, 𝐹	1	 = 	2	 ∗ 	 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∗ 	𝑅𝑒𝑐𝑎𝑙𝑙)	/	(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑅𝑒𝑐𝑎𝑙𝑙), and where Support is the 
number of samples of each class. The Confusion Matrix gives a detailed view, showing true 
negatives, false positives, false negatives, and true positives (e.g., 476 TN, 409 TP of Logistic 
Regression), improving the accuracy evaluation. The comparison of these metrics of the 
Logistic Regression (accuracy 0.8510) against Random Forest (accuracy 0.8529) is conducted 
to assess their efficiency in predicting the outbreaks. 
3. Results 
The correlation heat map used in the analysis of surveillance characteristics demonstrates that 
Year and Reported Cases (0.76) and Vaccination Coverage (0.82) showed strong positive 
correlation with these impacting features. Logistic Regression and Random Forest models were 
tested, and they achieved accuracies of 0.8510 and 0.8529, respectively; thus, they were similar. 
As shown in the confusion matrices, both models are efficient in predicting the majority class 
(0), although Random Forest performs a bit better in predicting class 1 (412 vs. 409). Isolation 
Forest anomaly test identifies the outliers between Lab Confirmed Cases and Hospital 
Admissions and informs potential areas of interest. In general, both models display strong 
predictive power. 
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Figure 2: Correlation Heatmap 
Figure 2 shows the Correlation Heatmap of Surveillance Features showing statistically 
significant correlations. There exists a strong positive correlation (1.00) with Year, with 
significant correlations with Reported Cases (0.76) and Vaccination Coverage (0.82), 
indicating the influence of time. Hospital admissions and Lab confirmed cases bear a strong 
correlation (1.00), which implies convergence of the health indicators. On the other hand, the 
relationship between Week Number and the Weather Index is negatively correlated (-0.77), 
indicating seasonal effects. There is a strong correlation between Population Density and 
Mobility Index (1.00), which indicates the dynamics of the cities. These revelations highlight 
substantial elements that propel surveillance data, with minimal cross-feature impairment. 
Table 1. Classification Report of Logistic Regression 
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Table 1 illustrates the Logistic Regression Classification Report, which presents performance 
indicators. Class 0 has a precision of 0.8546, a recall of 0.8655, and an F1-score of 0.8600, 
with 550 instances to support it. In class 1, the precisions are 0.8468, recalls 0.8347 and f1-
scores 0.8407, of 490 instances. The model has an accuracy of 0.8510 and a macro and 
weighted averages of 0.8507 and 0.8509, respectively, meaning a balanced outcome. These 
statistics indicate stable predictive performance, where there is minor variability in the 
performance per class, indicating the stability of the model in surveillance data classification.  

 
Figure 3: Logistic Regression Confusion Matrix 
Figure 3 shows the Confusion Matrix of Logistic Regression, which measures the correctness 
of the prediction. It displays 476 true negatives and 409 true positives, 74 false positives and 
81 false negatives. This implies that the model accurately classifies 885 sessions (476 + 409), 
and falsely classifies 155 sessions (74 + 81) with a percentage accuracy of about 0.8510. The 
matrix shows that there is a slight imbalance where there is improved performance in the 
negative class rather than the positive one. These indicators are indicative of a reliable 
classification, but errors in the positive class imply the possibility of improvement. The 
visualization can give accurate information on the effectiveness of the model in the analysis of 
surveillance data. 
Table 2. Classification Report of Random Forest 
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Table 2 displays the Random Forest Classification Report, which shows the model's 
performance. In class 0, the precision is 0.8590, the recall is 0.8636 and the f1-score is 0.8613, 
which were supported by 550 instances. In class 1, precision is 0.8460, recall is 0.8408, and 
f1- f1-score is 0.8434, and the instances are 490. The model is providing an accuracy of 0.8529, 
and the macro averages of the precision and recall are 0.8525 and 0.8522, respectively and the 
weighted averages are 0.8528 and 0.8529, respectively. These metrics imply that the model has 
dealt with the classes with a balance and reliability of classification, where the results predict 
the value of class 0 a bit better, which can help in research and assessment of surveillance data. 

 
Figure 4: Random Forest Confusion Matrix 
Figure 4 shows the Confusion Matrix of Random Forest to evaluate the accuracy of prediction. 
It displays 475 true negatives and 412 true positives, 78 false negatives and 75 false positives. 
This will amount to 887 correct predictions (475 + 412) and 153 misclassifications (75 + 78), 
giving an accuracy of about 0.8529. According to the matrix, there is a good result in the 
prediction of the negative class with a slight advantage over the positive class. Such findings 
imply that the model is strong, and there were few errors, which gives credible information on 
surveillance data classification as at 04:40 PM PKT, July 09, 2025, and contributes to quality 
decision making. 
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Figure 5: Isolation Forest Anomaly Detection 
Figure 5 reflects the Isolation Forest Anomaly Detection plot that depicts the Lab Confirmed 
Cases versus Hospital admissions. Most of the data points (blue) fall in the normal category 
and this lies amid the majority of the data that falls in the range of 150-200 cases and 40-70 
admissions, which signify normal trends. The anomalies (in red) are rare and are found in 
greater numbers of cases (e.g., 220-240) and different admissions (30-90), which indicates 
some unusual health phenomenon. Such distribution reveals the model’s capability to detect 
outliers, where the majority of the anomalies occur at the ends, which is beneficial in 
understanding unusual trends in the surveillance data, even in a specific health investigation 
and response. 
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Figure 6: Model Comparison (Logistic Regression Vs Random Forest) 
Figure 6 represents the performance of the ROC plot of two models, Logistic Regression and 
Random Forest, to identify a particular outcome (binary). The Random Forest (orange) curve 
is uniformly above the Logistic Regression (blue) in performance. This is proven by the Area 
Under the Curve (AUC) values: Random Forest delivers an AUC of 0.93, Logistic Regression 
an AUC of 0.80. The higher the AUC, the greater the capacity of class distinction. The diagonal 
dashed line has a fixed value, which will be random guessing (AUC = 0.5). Therefore, the two 
models have acceptable results in exceeding chance, but Random Forest works much better in 
classifying data in this dataset. 
4. Discussion 
The results of this research serve as a rich source of information on the use of big data analytics 
to predict the earliest signs of an outbreak of an infectious disease, and on the performance of 
Logistic Regression and Random Forest methods, and Isolation Forest to identify anomalous 
behaviors in the collected data. It is clear in correlation analysis that a strong positive 
relationship exists between Reported_Cases and Hospital_Admissions and Lab_Confirmed, 
with correlation coefficients of 1.00, which are compliant with epidemiological principles that 
state that acceleration in reported cases and hospitalizations is a good indicator of Lab 
Confirmed [13, 14]. This significant value of the linear relationship identifies the usefulness of 
these variables as a good proxy in the magnitude of outbreak, a perception that can be 
confirmed by the world surveillance activities that insist on incorporating clinical data findings 
[14]. On the other hand, Vaccination_Coverage shows a huge negative relationship with -0.88, 
which is consistent with a high amount of literature that high rates of vaccination are associated 
with lower disease incidence [14, 17]. This adverse correlation demonstrates the role of 
vaccination as a safeguard and indicates that the inclusion of vaccination information in 
surveillance systems has the potential to make early detection more effective by identifying 
areas with increasing cases and low vaccination coverage. 
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The classification accuracy of Logistic Regression and Random Forest provides a subtle 
comparison of previous studies. Logistic Regression had an accuracy score of 0.8510; the 
confusion matrix of 476 true negatives and 409 true positives shows that its predictive power 
on the most common class was strong [15]. This accuracy can be compared to another study in 
dengue fever prediction that had an AUC of 0.85 and explained that the low effectiveness could 
be associated with the limitations of linear models to analyze complex and real-world data [15]. 
The increased accuracy of the current study can also be attributed to the fact that the dataset is 
controlled and synthetic, and therefore there is minimal noise and variability, which could 
optimistically bias the model performance. The Random Forest, when used to predict West Nile 
virus, performs slightly better than the reported AUC of 0.90 with an accuracy of 0.8529 and a 
confusion matrix of 475 true negatives and 412 true positives [16]. The optimization between 
non-linear pattern identification can be done, but the lower recall value of class 0 (e.g., 0.8636) 
than the previous studies denote the possibility of over-fitting, characteristic of ensemble 
techniques in small data sets [16]. Comparable accuracies of the two models, accompanied by 
overlapping ROC curves, challenge prior claims of a Random Forest superiority, which was 
probably caused by smaller variability in the present data set [15, 16]. The fact that this parity 
exists highlights that it is worth validating on more extensive and more real-world data to 
determine the real efficacy of the model. 
The Random Forest model also provides feature importance analysis, which also enlightens 
the variables behind outbreak prediction. Lab_Confirmed, Hospital_Admissions, and 
Reported_Cases became the key predictors, which confirms the statement that clinical evidence 
is a notable contributor in the surveillance of influenza [11]. Such an emphasis on the traditional 
health indicators is consistent with the previous research stating that these health indicators are 
reliable within the scope of the early detection systems [11, 14]. Nevertheless, the values of 
Social_Media_Alerts and Mobility_Index were rather low, which could be explained by the 
fact that the synthetic dataset has a rather narrow range of social and mobility dynamics when 
compared to unstructured data in real-time [12]. The anomaly detected by the Isolation Forest 
of Mobility_Index versus the Social_Media_Alerts also shows a new surveillance trend, which 
is similar to research findings that exploited data in Twitter to monitor cholera outbreaks [12]. 
Such anomalies, noticed at increased case numbers (e.g., 220-240) and different admissions 
(30-90), are perceived as the early warning indicators, which potentially can supplement 
clinical indices [12]. Real-time responsiveness, which is a major limitation of the conventional 
systems, could be increased with the integration of mobility and social data [4].  
The study has some limitations to its findings. The small size of the dataset interferes with 
statistical power, a fact that replicated itself in prior studies, assigning insufficient information 
to the poor performance of the surveillance model [17]. This limitation is probably among the 
reasons the accuracies are high (0.8510, 0.8529), which possibly means that there is overfitting 
and the models are adapted too closely to the patterns in the training data, especially when 
Random Forest is used [16]. Lack of real-time information is another significant gap, as it 
decreases the applicability towards dynamic outbreak surveillance with immediate response to 
up-to-date vaccination and mobility status [4, 14]. These limitations suggest that using larger, 
real-time data would increase the robustness of such models and their practical usefulness, 
which is consistent with the recommendations of better data integration into the global health 
systems in the literature [4, 17]. 
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Compared to the literature, there are certain similarities and differences. Accuracies in the 
current study are higher than the reported AUCs (0.85 and 0.90 compared to Logistic 
Regression and Random Forest, respectively), probably because the data was controlled, unlike 
the real-life data points involving dengue and West Nile [15, 16]. Nevertheless, the low recall 
(e.g., 0.67 in previous Random Forest papers) indicates that this limited data could also lead to 
extensive overfitting, and this is aligned with the literature on ensemble techniques [16]. The 
results of the correlations support the effect of vaccination, but the magnitude (-0.88) could be 
related to the influence of the size of the sample [14]. The pattern in feature importance 
coincides with the clinical emphasis of previous research, whereas the reduced social media 
involvement deviates, potentially as a result of the limitation of the dataset [12]. Anomaly 
detection reflects the findings of Twitter but needs broader data to validate it [12]. Such 
comparisons indicate the necessity of flexibility that can correspond to various, practical 
studies and increase applicability [15, 17]. 
The paper shows that, when used as a basis and with the anomalies as a sentinel, Logistic 
Regression and Random Forest have potential when applied to outbreaks, using clinical data 
as their basis. Nonetheless, one cannot ignore the tiny size of the data and the chance of 
overfitting. Real-time and multi-country data should be prioritized in the future to confirm such 
findings, and future limitations should be addressed [4, 17]. Further expansion of the social and 
mobility data can help to reinforce anomaly detection, and either experimentation with an 
ensemble approach or more complex algorithms, such as Gradient Boosting, may help alleviate 
overfitting [16, 17]. The study provides the basis for enhancing international surveillance, 
provides strong, coordinated data plans, and adds to the growing state of evidence-based public 
health [4, 14]. 
Future research may include the addition of spatial models so that geospatial outbreak 
prediction can be facilitated, including data on latitude and longitude, country-specific delays 
in reporting of outbreaks, or regional mobility patterns to deliver spatial risk maps and enhance 
focused response strategies. 
5. Conclusion 
This paper highlights the great potential of big data analytics in raising early warning signals 
of infectious disease outbreaks based on an assessment of global surveillance mechanisms. The 
performance of Logistic Regression and Random Forest models shows a high accuracy of 
0.8510 and 0.8529, respectively, when making predictions, which indicates that these models 
perform well despite failing to achieve a perfect value of AUC 1.0. Correlation analysis shows 
a strong positive relationship between Reported_Cases, Hospital_Admissions, and 
Lab_Confirmed (correlation 1.00) and a strong negative relationship with 
Vaccination_Coverage (-0.88). This proves how vaccination offers protection against an 
outbreak. Clinical variables are found to be important predictors in feature importance analysis 
and anomalies in Mobility_Index and Social_Media_Alerts through Isolation Forest, which 
helps to improve the accuracy of early anomaly inference. These results indicate that the 
combination of a variety of data sources can be rather useful in enhancing surveillance models.  
To make big data analytics a part of any public health system, using real-time monitoring to 
leverage clinical, social, and environmental data is needed. To overcome the issues of data silos 
and slow data reporting, data scientists and health agencies should work together to create a 
uniform approach to collecting data and create scalable systems. Implementation can be tackled 
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with optimal efficiency by training the healthcare professionals in using the tools used in 
analysis. Future studies ought to build on datasets to accommodate a wider range of 
geographical and time-altering statistics, enhancing the generalizability of the data. The use of 
real-time sources will increase the real-time outbreak monitoring, such as live social media and 
mobility notifications. Moreover, it is advisable to solve an overfitting issue, which is evident 
in the current, small, and synthetic dataset, using ensemble tools such as combined Logistic 
Regression and Random Forest or other advanced models such as Gradient Boosting. Such 
interventions will enhance international health surveillance, which is responsive to changing 
epidemiological issues. 
 
References 
[1] S. Fatima, "PUBLIC HEALTH SURVEILLANCE SYSTEMS: USING BIG DATA 

ANALYTICS TO PREDICT INFECTIOUS DISEASE OUTBREAKS," International 
Journal of Advanced Research in Engineering Technology & Science, vol. 11, 2024. 

[2] G. Alfani, "Epidemics and pandemics: From the justinianic plague to the Spanish flu," 
in Handbook of cliometrics: Springer, 2024, pp. 1931-1965. 

[3] Z. Li et al., "Reviewing the progress of infectious disease early warning systems and 
planning for the future," BMC Public Health, vol. 24, no. 1, p. 3080, 2024. 

[4] G. Babanejaddehaki, A. An, and M. Papagelis, "Disease outbreak detection and 
forecasting: A review of methods and data sources," ACM Transactions on Computing 
for Healthcare, vol. 6, no. 2, pp. 1-40, 2025. 

[5] S. J. Alsunaidi et al., "Applications of big data analytics to control COVID-19 
pandemic," Sensors, vol. 21, no. 7, p. 2282, 2021. 

[6] S. Melchane, Y. Elmir, F. Kacimi, and L. Boubchir, "Artificial Intelligence for 
Infectious Disease Prediction and Prevention: A Comprehensive Review," arXiv 
preprint arXiv:2411.10486, 2024. 

[7] L. A. Haafza, M. J. Awan, A. Abid, A. Yasin, H. Nobanee, and M. S. Farooq, "Big data 
covid-19 systematic literature review: Pandemic crisis," Electronics, vol. 10, no. 24, p. 
3125, 2021. 

[8] H. A. K. Aryffin, M. A. B. Sahbudin, S. A. Pitchay, A. H. Abhalim, and I. Sahbudin, 
"Technological trends in epidemic intelligence for infectious disease surveillance: a 
systematic literature review," PeerJ Computer Science, vol. 11, p. e2874, 2025. 

[9] E. Y. Alqaissi, F. S. Alotaibi, and M. S. Ramzan, "Modern machine‐learning predictive 
models for diagnosing infectious diseases," Computational and mathematical methods 
in medicine, vol. 2022, no. 1, p. 6902321, 2022. 

[10] E. National Academies of Sciences and Medicine, "New Technologies and Data 
Systems," in Improving the CDC Quarantine Station Network's Response to Emerging 
Threats: National Academies Press (US), 2022. 

[11] S. Amin, M. I. Uddin, D. H. AlSaeed, A. Khan, and M. Adnan, "Early detection of 
seasonal outbreaks from twitter data using machine learning approaches," Complexity, 
vol. 2021, no. 1, p. 5520366, 2021. 

[12] J. M. Lane, D. Habib, and B. Curtis, "Linguistic methodologies to surveil the leading 
causes of mortality: scoping review of Twitter for public health data," Journal of 
medical internet research, vol. 25, p. e39484, 2023. 



International Journal of Innovation Studies 9 (1) (2025) 

 

 1622 

[13] B. M. Gomes, C. B. Rebelo, and L. A. de Sousa, "Public health, surveillance systems 
and preventive medicine in an interconnected world," in One Health: Elsevier, 2022, 
pp. 33-71. 

[14] R. Meckawy, D. Stuckler, A. Mehta, T. Al-Ahdal, and B. N. Doebbeling, "Effectiveness 
of early warning systems in the detection of infectious diseases outbreaks: a systematic 
review," BMC public health, vol. 22, no. 1, p. 2216, 2022. 

[15] C.-Y. Kuo, W.-W. Yang, and E. C.-Y. Su, "Improving dengue fever predictions in 
Taiwan based on feature selection and random forests," BMC Infectious Diseases, vol. 
24, no. Suppl 2, p. 334, 2024. 

[16] O. E. Santangelo, V. Gentile, S. Pizzo, D. Giordano, and F. Cedrone, "Machine learning 
and prediction of infectious diseases: a systematic review," Machine Learning and 
Knowledge Extraction, vol. 5, no. 1, pp. 175-198, 2023. 

[17] Y. Cho et al., "Prediction of hospital-acquired influenza using machine learning 
algorithms: a comparative study," BMC Infectious Diseases, vol. 24, no. 1, p. 466, 2024. 

 
 


