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Abstract 

In an era where artificial intelligence (AI) increasingly influences critical decisions, success is 
no longer defined solely by technical performance; it also hinges on the system’s ability to 
foster and align with human trust. The proposed study presents a new framework called Trust-
Aware Self-Supervised Learning (TA-SSL), which aims to learn implicit human trust through 
conversation behaviour, enabling AI systems to respond according to the current trust levels 
between AI and users. In contrast to the current models trained with explicit trust labels, TA-
SSL is trained on behavioural cues, indicative of the trust level, to the AI during human-AI 
interactions, including hesitation, clarification requests, and action reversals. With a temporal 
contrastive learning goal, TA-SSL induces sparse, dynamic embeddings of trust incorporated 
into decision-making strategies, including explanation depth, uncertainty mediation, and user 
autonomy management. We justify our visitation with the Kaggle Human vs Robot talking 
information, which contains over 10,000 speech samples from a crowd. TA-SSL exceeds these 
static, supervised, and reinforcement learning baselines to record +19.3% more successful task 
instructions, -24.6% fewer irrelevant clarification requests, and a trust calibration value of 0.76 
(0.42 in supervised models). The obtained trust embeddings, exhibited by the evaluation 
measure, exhibit a high degree of temporal consistency and specificity to the user and the 
visualisations shown, using PCA as a visualisation method. PCA shows separable groups in 
low, medium, and high trust conditions. Case studies also show that the model can be flexibly 
restructured or strengthened to increase user trust in changing user behaviour. The study has 
demonstrated that latent trust can be effectively learn based on unlabelled behavioural 
indicators and informed in bespoke ways to drive AI behaviour. TA-SSL is a way to create a 
scalable, domain-agnostic pipeline to build user-aligned, emotionally intelligent AI systems 
and representation learning with innovation psychology to boost trustworthy human-AI 
collaboration. 
Keywords: Trust modelling · Self-supervised learning · Human-AI interaction · Behavioural 
signal analysis · Temporal contrastive learning · Adaptive AI systems 
1 Introduction 
Artificial intelligence (AI) systems have continued to find their way to conversational 
platforms through which they intervene in human decision-making and activities that people 
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perform in their daily lives [1]. Whether it is a healthcare triage robot, a financial advisor, a 
customer support agent, or an educational tutor, the AI interface that uses either voice or text 
defines how humans interact with information, make decisions, and interpret automated advice. 
Although accuracy, latency and fluency in natural language are commonly used as indicators 
of the success of such systems, one often overlooked determinant of long-term effectiveness is 
human trust. Trust not only regulates the user's acceptance of AI suggestions, but the user will 
also decide whether to cooperate with it, override it, or break contact with the system entirely. 
[2]. The orientations of the AI productions and the levels of trust in humans are of greater 
concern in high-stakes and ambiguous sectors. Because of this, the core questions of 
developing social-intelligent AI revolve around how to model the nature of trust. 
The systems of conversational AI developed today are highly context-insensitive in their 
approach to user interaction, despite the rise of natural language processing (NLP) and machine 
learning [3]. They tend to base their adjustment on rule-based feedback or a threshold of 
confidence, treating the behavioural cues, which are subtle manifestations of human 
uncertainty, doubt or changing attitudes towards the AI agent, as insignificant. It creates an 
unstable interaction model, where the incompatibility between the system and users can result 
in overtrusting (underground tendencies to accept wrong AI recommendations) or 
undertrusting (underground tendencies to dismiss a good recommendation) effect [4]. These 
two situations have the potential to worsen the performance of tasks, lower the satisfaction of 
users, and constrain the implementation of intelligent systems. Instead, there is a need to find 
a way of inferring trust tacitly and changing the behaviour of the AI in real-time to create human 
trust on the fly, and to sustain and regulate it [5]. 
This article proposes a new approach to this problem: Trust-Aware Self-Supervised Learning 
(TA-SSL). TA-SSL is a framework to model human trust dynamics of the AI system without 
direct annotations or labelled trust data. With self-supervised learning (SSL) approaches, latent 
trust representations are learned in the framework, using unlabelled behavioural indicators as 
they are presented in unrestricted dialogues between humans and AI [6]. Such cues have 
included hesitation time between inputs, user reformulations of the query (requests to clarify), 
reversals of messages or contradictions. These behavioural proxies are well-recognised in 
cognitive psychology and human-computer interaction as the correlates of the trust and 
confidence levels. Nonetheless, they have not yet been systematically used through SSL means 
in real-time dialogue systems [7]. TA-SSL can fill this gap and learn smaller, time-cognizant 
trust embeddings that can vary with how users interact, such that conversational agents can 
change their approach to how they explain, how they delegate, and how transparent they are in 
their decision-making process. 
The TA-SSL innovation consists of the capacity to develop a trust-aware AI agent driven to 
learn without annotated trust labels. Unlike supervised methods, which need laborious, 
subjective trust labelling work, typically done inconsistently by users and applications, TA-
SSL works on raw behavioural traces represented by human-AI interaction logs. Using a 
temporal contrastive learning task, the system learns to recognise representations relevant to 
trust by identifying a context-specific pattern of behaviour relying on the temporal vicinity of 
the interaction segments (learning a temporal trust path) [8]. These representations could then 
be passed on to downstream modules that will decide how much control the agent needs to 
perform, how meticulously it needs to explain things and at what point it needs to seek input/ 
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confirmation from the user. This enables the AI system to adapt in real time based on how much 
the user trusts it, encouraging better and more effective cooperation. [9]. 
The core research questions addressed in this study are: 

1. Can latent trust be inferred from natural human-AI dialogues using self-supervised 
learning without explicit labels? 

2. How do learned trust embeddings impact the adaptability and effectiveness of AI 
conversational agents? 

To address these questions, the study train the TA-SSL model on an open-source Kaggle 
conversational dialogue dataset in which people are conversing with an AI agent, similarly to 
a robot. The data comprises a variety of interactions, such as requests to clarify, hesitation in 
reaction, and reversal in dynamics; hence, it offers a rich ground base from which to model 
behavioural signs of trust. Compared with the supervised and trust-agnostic baselines, our 
extensive experiments show that TA-SSL can significantly boost necessary performance 
measures like success task rate, trust calibration, and reduction of unnecessary interventions. 
In particular, TA-SSL delivers a +19.3% increase in the successful task performance results 
and −24.6 decrease in preventable interruptions, which reflects better adherence to human 
expectations of trust. 
The primary contributions of this research are as follows: 

 The study proposes TA-SSL, a self-supervised learning framework that derives latent 
trust embeddings from behavioural conversation data without requiring annotated trust 
labels. 

 The study shows how these embeddings can be integrated into AI dialogue systems to 
support adaptive explanation strategies and real-time behaviour modulation based on 
inferred user trust. 

 The study evaluates the effectiveness of our method using a publicly available 
conversational dataset and shows substantial improvements over existing baselines in 
trust-sensitive interaction outcomes. 

This research can be a scalable and generalisable avenue toward developing trustworthy, 
adaptive, and socially optimised conversational agents. This can be achieved by connecting 
self-supervised representation learning and human-centred AI system design. TA-SSL is an 
essential milestone toward developing human-AI systems that are not only smart but also 
emotionally and cognitively aware of the dynamic changes of trust in their users. 
2 Related Work 
This section will present the theoretical support and underpinnings of the proposed TA-SSL 
framework by the central literature that guides this framework. The study review the literature 
on trust within a human-AI collaborative context, the use of behavioural cues in conversational 
trust modelling, the development of self-supervised learning to enable representation learning 
within NLP, and define the particular research gap covered by the current work. 
2.1 Trust in Human-AI Interaction 
Trust is one of the key parts of effective human-AI interaction, especially when using decision-
support systems, where the human dependency on machine-generated recommendations can 
have significant consequences. Psychologically, trust has been defined as the readiness of a 
party to become vulnerable to the actions of another party, depending on the trust that the other 
would act in a given way that the trustor desires, regardless of the power to keep track of or 
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control the other [10]. Both cognitive and affective elements help define trust within the AI 
systems. Cognitive trust and affective trust are based on the perception of the competence of 
the AI system, as well as on the reliability and predictability of the latter, and experiences of 
communication, respect, empathy, frustration, and satisfaction, respectively [11]. 
Recent texts in human-centred AI have discussed the need to focus on trust calibration, i.e., the 
consistency of the trust a user places on a system with the reliability of that system. The 
consequences of miscalibrated trust are negative because overtrust can cause a situation where 
users blindly consider inaccurate outputs, while undertrust can cause even valid AI suggestions 
to be rejected unnecessarily [12]. To curb such risks, readability and transparency, together 
with user feedback systems, are being proposed to be incorporated in future DAI systems to 
promote well-calibrated trust [13]. However, most currently used strategies are based on static 
or reactive adjustments, which are instigated depending on what the user does (e.g., pushing a 
help button or asking for an explanation). These methods fail to capture the latent, developing 
process of trust among human beings, which can vary over interaction time without clear 
instructions. 
More than that, most of the existing research on trust-aware AI is based on supervised learning 
regimes with models being trained on annotated levels of trust, based on user surveys or 
manually annotated by humans [14]. Although a good way of learning, this approach draws 
subjectivity, does not scale, and is not amenable to live changes. Instead, the most adequate 
way to infer implicit trust is by using natural clues that signal during interaction, which has not 
been explored much today in the books. 
2.2 Conversational Trust Signals 
Dialogue and conversational AI offer a relatively unexplored data source about trust through 
the prism of user behaviour. Several studies in the field of human-computer interaction (HCI) 
and cognitive science pointed to several behavioural indicators that show uncertainty or 
hesitation on the part of the user, and subsequent decrease in confidence, which can all be the 
harbingers of a potential change in trust [15]. These are signs of hesitation (e.g., pauses between 
turns or disfluencies in the speech, e.g. the use of the sounds of hesitation), query 
reformulations (e.g. the reformulation or the clarification of the original question) and 
backtracking behaviour (e.g. the rescinding of a prior action or request). 
In spoken dialogue systems, the hesitation itself was empirically related to cognitive load and 
difficulties, which relate to uncertainty and trust fragmentation [16]. Perceived system 
competence has also been associated with query reformulation, viz., repeated rephrasing, which 
normally reflects the user's feeling that the system has not correctly understood them. Likewise, 
reversals of actions (give contrary orders, reissue the inquiries, and cancel and restart them 
many times) can be a signal of frustration and loss of confidence in the AI [17]. 
Although this is recognised, these behavioural signals are not used systematically or in real 
time in most existing dialogue systems. Through some investigative work, such features are 
manually annotated to be associated with the levels of trust, but there is still no production-
level system that incorporates such cues into a generalizable, scalable system [18]Additionally, 
most existing methods necessitate large labelled data, which is inconvenient to apply to 
different fields or even different people. This is an important necessity for learning trust-
relevant representations on behavioural data annotation free, and hence, it opens up newer 
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possibilities of real-time conversational system adaptation based on trust-related 
representations. 
2.3  Self-Supervised Learning for Behavioural Modelling 
Self-supervised learning (SSL) has become a strong method in the natural language processing 
(NLP) area, especially for representation learning without manual tags. SSL models are trained 
to apply meaningful structures in data solving pretext tasks based on the data to introduce 
supervision. Other applications of contrastive learning in NLP have included SimCSE [19], 
learning sentence embeddings by comparing various augmentations or temporal snapshots of 
the same text. These same approaches have been used in BERT-based contrastive tasks, 
whereby representations are trained to tell apart differently-similar (in context) and differently-
dissimilar (in context) sequences. 
Although SSL has been promising in encoding semantic similarity and intent in conversations, 
SSL is yet to be modified to encode latent psychological conditions like trust. The majority of 
the current SSL approaches are built around structural or semantic representations, but not 
behavioural or cognitive planes [20]. For example, both SimCSE and other related methods 
work on paraphrasing, entailment, or discourse coherence, yet this does not result in tracking 
the user's behaviour to show a sense of trust, doubt, or even hesitation. Also, most applications 
of temporal modelling in SSL have been to audio or vision applications with little concern for 
time-evolving trust cues in a text-based interaction [21]. 
Recent developments on temporal contrastive learning and multi-view SSL can provide a 
theoretical basis for trust modelling. Treating adjacent interaction turns as positive pairs, and 
distant or disparate-user interaction turns as negative pairs, it is possible to learn stable trust 
representations over time using a contrastive objective. Nevertheless, none of these concepts 
have been fully tested in the trust area, and there is no framework to consider using SSL to 
build trust-based inference within a dialogue system. 
2.4 Gap Identified 
The intersection of trust-aware AI, behavioural signal analysis, and self-supervised learning 
gives an interesting but understudied research opportunity. Whereas the previous research has 
acknowledged the role of trust in collaboration between humans and AI and discussed 
behavioural indicators as proxies of trust, to date, no end-to-end system has been proposed that 
combines both of them with the help of SSL to perform real-time adaptation of the AI [22]. 
Specifically, existing systems either: 

1. Use manually labelled trust data to train classifiers, limiting scalability and 
generalisation; 

2. Ignore the temporal evolution of trust, relying on static metrics; or 
3. Use SSL for general NLP tasks without targeting trust-related behaviour. 

This paper bridges this devastating gap by extending self-supervised learning to imply trust 
representations barely from observational cues in dialogue, not requiring a specific label. Since 
these embeddings can be learned with a temporal contrastive objective and be used to underpin 
adaptive decision-making in AI systems, TA-SSL is a scalable, interpretable and user-aligned 
way to model trust. It connects theoretical knowledge in psychology on the one hand with 
computational advances in NLP and SSL on the other hand. It provides the basis for more 
reliable and socially intelligent conversational agents. 
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3 Methodology: Trust-Aware Self-Supervised Learning  
This part discusses the design and implementation of the Trust-Aware Self-Supervised 
Learning (TA-SSL) framework in detail. The suggested methodology incorporates behavioural 
signal extraction, temporal contrastive learning, and adaptive response mechanisms into one 
pipeline. This architecture aims to learn latent representations of user trust by relying 
exclusively on behavioural signals of human-AI conversations and does not require explicit 
labels or subjective trust scores. Such trained trust embeddings are then used to guide the AI 
system to more carefully manage its explanations and autonomy in a real-time trust-sensitive 
interaction. 
3.1 System Overview 
The TA-SSL architecture is organised into five primary components, as depicted on Figure 1: 

 
Figure 1: System Architecture 
During a normal interaction session, an agent (e.g., a chatbot or virtual assistant) interacts with 
the user. All the interactions are recorded in the system with timestamps, the content of the 
utterances, and how the system responds. These logs are fed as inputs to the behavioural feature 
extractor to extract trust-related signals such as hesitation duration, clarification frequency, and 
action reversals. 
The features are then passed through a temporal encoder, which captures the time dependency 
of the trust-relevant behaviour. A contrastive learning task is applied to differentiate temporal 
proximity (positive) and temporal distance or cross-user (negative) interaction divisions. The 
encoder maps one behavioural segment to a fixed-length trust embedding, reflecting the user's 
latent trust state. 
This set of trust embedding is then put into an adaptation module, which dynamically adjusts 
the AI's behaviour. Based on the trust level inferred, the system can adapt its response style. 
For example, it can give shorter answers and exercise more control where trust is high or vice 
versa, i.e., it can provide elaborate explanations and require more confirmation where trust is 
low. 
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3.2 Behavioural Feature Extraction 
The crux of TA-SSL is based on the premise that human trust is imprecisely and unconsciously 
expressed through behavioural tendencies during a discourse. These patterns are micro, 
evident, and universal. According to the studies in HCI, cognitive psychology, and NLP, the 
paper distinguish three fundamental trust-indicative properties, which can be derived in an 
unsupervised way based on the conversation log: 
a) Hesitation (Temporal Delay): 
This can be determined as the total number of seconds between the system's response and the 
user's subsequent input. The longer the delays, the more the user might doubt or miss taking 
action based on the given recommendation. In an interactive voice, this may be the length of 
silence; in a text-based interface, it may be the difference in the timestamp of turns. For 
example, when a user replies more slowly following a medical suggestion, that could signify 
less certainty or a lack of background. 
b) Clarification Requests: 
These are the cases when a user asks to elaborate explicitly, expresses their query, or follows 
the question with an inquiry such as “What do you mean?” “Can you elaborate?” or “Are you 
sure?” These demands are good behavioural signs of partial understanding or suspicion. They 
are identified using a mixture of word matching and intent classification. 
c) Action Reversals: 
This can be characterised by inconsistent or reversal patterns where the user has reversed or 
undone what they did before, like changing a choice, cancelling a recommendation, or giving 
an input that is opposite of what they did. For example, when a customer finds one of the 
booking recommendations acceptable and still terminates the booking afterwards, it can mean 
a loss of confidence. The behaviour is detected by analysing command pairs during a session 
and detecting semantic opposition or negation. 
All these features are numerically coded and normalised to adjust to users' differences. They 
serve as the input to the temporal encoder in learning trust representation. 
3.3 Temporal Contrastive Objective 
The fundamental learning task of TA-SSL is to produce temporally consistent trust 
representation on behalf of the same user while being discriminative between different 
users/sessions. The study uses a temporal contrastive learning strategy based on SimCLR and 
SimCSE but applied to behavioural trust sequences. 
This scheme divides every conversation into time-fixed windows (e.g., 3-5 turns). In every 
anchor window, the study has: 

 Positive Pairs: Interaction sections by the same user in relatively close temporal 
proximity (e.g. the adjacent segment). 

 Negative Pairs: Segment of user interactions or segments at temporal distances across 
the same session. 

Let hi and hj be embedding vectors of a positive pair of segments. The contrastive temporal 
loss (InfoNCE) is set as: 

Lୡ୭୬୲୰ୟୱ୲ = −log
exp(sim(hூ , h௃)/τ) 

∑ exp(sim(hூ , h௃)/τ) ௄
௄ୀଵ
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where sim(hூ , h௃)=
୦಺,୦಻

‖୦಺‖ฮ୦಻ฮ
 is the cosine similarity, and τ is a temperature hyperparameter. K 

includes one positive and multiple negative samples. 
This loss will encourage the model to reduce the pairs of behaviourally similar structures 
located in time proximate to each other in an embedding space and repel dissimilar or cross-
user ones. In the long run, this leads to the formation of a smooth trust path that each user 
develops, and the methodology captures changes in trust movement within the context of 
interaction. 
3.4 Trust Representation Layer 
The encoder generates the fixed-length trust embedding vector as output, which represents a 
user's trust-related behavioural state at a point in time. The study embeds our model into a 128-
dimensional space, which provides adequate dimensionality and can represent subtle 
differences while being computationally tractable. 
Dimensionality reduction algorithms on these trust embeddings can be visualised through 
Principal Component Analysis (PCA) or t-distributed Stochastic Neighbour Embedding (t-
SNE). Considering visualisation, the study can see smooth flows over sessions and across users 
in the individual trust trajectory patterns and easily distinguish high and low trust pattern 
combinations. 
Besides visualisation, the embeddings feed downstream modules that generate adaptive 
responses. Since the embeddings are unsupervised, they can be applied to diverse 
conversational domains with no retraining required and no manual supervision necessary. 
3.5 Adaptation Logic 
After the trust embedding is estimated and inferred on a user at some time step, it is used to 
regulate the behaviour of the AI system. This is achieved using a lightweight adaptation 
module, which assigns response techniques to trust scores. The study has three bands of 
behaviour: high trust, moderate trust, and low trust, on a learned axis, on the norm or projection 
of the trust embedding. 

 High Trust Zone: 
o The system assumes user confidence. 
o It provides concise, direct answers. 
o It takes more autonomous decisions (e.g., auto-confirmation). 
o Explanations are minimal unless explicitly requested. 

 Moderate Trust Zone: 
o The system adopts a cooperative stance. 
o It offers balanced answers with justifications. 
o It seeks mild confirmations. 
o It may suggest multiple options with rationale. 

 Low Trust Zone: 
o The system detects potential confusion or scepticism. 
o It provides extended, layered explanations. 
o It explicitly invites user input and confirmation. 
o It may display uncertainty or request clarification to rebuild trust. 
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The modulation based on this trust provides a user experience that is adaptive, transparent, and 
responsive to changes in the pattern of engagement, which improves both the user's task success 
and satisfaction. 
3.6 Implementation Setup 
TA-SSL is constructed on PyTorch because it is flexible through computing, with dynamic 
computation graphs and effective training loop properties. The temporal encoder is made of a 
BiLSTM (bidirectional long short-term memory) network capable of memorising the past and 
the future context in the behavioural chain. BiLSTM output is fed into a Multi-Layer 
Perceptron (MLP) projection head that maps it to a 128-dimensional trust embedding space. 
The general pipeline allows contrastive learning at scale by enabling batch-wise training using 
in-batch negative sampling. The details of the hyperparameters are as follows: Sequence 
length: 5 interaction turns, Embedding dimension: 128, Backpropagation: 64, Temperature 
0.07, Optimiser: Adam (learning rate = 0.001). 

 
Figure 2: Proposed System 
Figure 2 shows a real-time adaptive pipeline in which the user input is examined in real time 
to generate behavioural trust signals. The comparison is encoded with a time contrastive 
learning process to extract and encode these signals, which creates a dynamic trust embedding. 
This embedding is used to make the behaviour of the AI agent responsive to the deduced level 
of user trust and alter the amount of explanation, degree of autonomy, as well as the tone of 
interaction. It is modular and can be easily scaled and domain-agnostic, and, thus, can be easily 
tailored to seamlessly integrate with various conversational systems where adaptation that 
considers trust (sensitive adaptation) can improve collaboration and user experience. 
The framework aims to be modular and customizable to any dialogue interface that may be 
based on NLP, like open-domain chatbots, task-based agents, or voice assistants. All that is 
needed is that the interaction logs should have timestamps and textual inputs of both the user 
and the agent. Additional optional details, like a sentiment score or dialogue act labels, can also 
be used to augment the behavioural signal space without changing the fundamental 
architecture. 
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4 Experimental Setup and Dataset 
This section has described the experimental setup through which the performance of the 
suggested Trust-Aware Self-Supervised Learning (TA-SSL) system is assessed. Experimental 
design focuses on fidelity of real-world interaction by using a publicly available conversational 
dataset to approximate human-AI dialogue. The study provides the details of how the raw data 
is split into a dataset, the preprocessing of the data, how the evaluation metrics were chosen to 
evaluate system behaviour, alignment to trust, and the baseline models to perform the 
comparative analysis, and the protocol of training and testing the system. These are the right 
steps towards a strong, repeatable and open evaluation of TA-SSL abilities to model trust-
dynamics and dialogue system flexibility. 
4.1 Dataset: Kaggle Conversational Dataset (Human vs Robot) 
To test the TA-SSL in a user-realistic and behaviourally strong setting, the study chose the 
Kaggle Conversational Dataset (Human vs Robot) as the test-bed. This dataset contains around 
10,000 turns of dialogue, including thematic conversations of users with an AI-powered robot-
like agent throughout its numerous topics. The data set has informal and semi-formal prompts 
by the user, responses by the agent, and implicit behaviour cues, all very befitting in trust 
modelling. Even though the supplied dataset does not provide direct trust labels, its scale and 
width provide a solid base for self-supervised trust inference that is highly improbable by 
studying behavioural interaction signals. 
A multi-step pipeline was adopted to preprocess the dataset in compliance with the design 
requirements of TA-SSL. The study did timestamp inference to detect hesitation. Even though 
timestamp data was partially unavailable, estimation of the number of delays in dialogues was 
done by factoring in the average typing speed of the user and the length of user turns in 
dialogue. The abrupt pauses between the system responses and user responses became 
commonly accepted and coded as a sign of hesitation that would provide an approximation to 
the flux of cognitive trust in a scalable model. 
Then, the study conducted textual analysis to find out requests for clarity. They were 
operationalised as the user inputs with questions or reformulated prompts after AI responses. 
A mixture of rule-based keyword matching and semantic similarity measurement, as a BERT 
pre-trained sentence embedding, was used to flag queries such as What do you mean? or please 
clarify, or can you explain that differently? As a result of this strategy, even clarification 
expressed in a slightly different or indirect way could be identified. 
The study also determined the existence of action reversals, which are actions that oppose, 
negate, and alter the user's earlier input or choice. This can be expressed as an example since a 
cancellation of a recommendation after having agreed to it earlier, either because of non-
continuation or the user giving a contradicting action style, indicates low trust or lack of 
confidence. These were identified with a combination of sequence matching and contradiction 
analysis based on vector-space sentence representations. Snapshots of every interaction 
window were labelled using a binary signal to indicate identified behavioural data, forming 
structured input to the self-supervised model. 
The resulting data set was, therefore, composed of several user sessions, which have been 
subdivided into 3-5 windowed turns, each of which is mapped into a trust-related behavioural 
feature vector. The contrastive temporal encoder was trained on these windows and allowed 
trust representation learning in scale, and annotation-free ways. 
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4.2 Evaluation Metrics 
To evaluate the serviceability of TA-SSL based on end-user trust model representation and 
enhancement of AI adaptability, we used four evaluation measures that represent task 
performance, user alignment, and the quality of representation overall. 
Task success rate is the first metric used to determine whether the system's end product 
corresponds to what the user wanted to achieve. It comprises achieving well-rounded tasks like 
correct query resolution, accepted recommendations, or confirmed actions. It allows a 
comprehensive look at the agent's performance when it is propelled by the leverage of trust-
aware adaptation. 
The second measure is the intervention rate, which measures the rate of clarification demands 
or override corrections (e.g., reversals). When users do not trust, are confused, or are 
dissatisfied, the rate of intervention should be high. The lower the rate, the better the system is 
at hacking the next move the user will make by reducing friction and contributing to smoother 
interaction by aligning with trust. 
Furthermore, the study computed the trust calibration score, that is, the extent to which trust 
embeddings generated by TA-SSL are used in downstream measures of user satisfaction.  The 
correspondence between these two proxies and the embedding magnitude was calculated as a 
Pearson correlation coefficient. It quantitatively measured the correspondence between the 
system and human-perceived trust. Moreover, the study tested embedding coherence, 
emphasising intra-user and inter-user variance of trust embeddings. Trust embeddings of high-
quality ought to display low variance during a user session (temporal coherence) and high 
variance amongst users (individual specificity). These trends can be interpreted to mean that 
the embeddings are useful, stable, and can be used to represent the generalisation of trust state 
representation across various conversations. 
4.3 Baseline Models 
To demonstrate the benefit of the TA-SSL architecture, the study contrasted it with three 
baseline models, each of which is a different mechanism to model human-AI interaction that 
could be used instead of self-supervised trust learning. 
Baseline one is a non-adaptive agent, which lacks trust modelling. This agent is not dynamic 
because it does not alter its behaviour according to user input or urgent signs. It echoes the 
default tendency of most classic chatbots and becomes a control condition to determine the 
added value of trust-based adaptation. 
A fully labelled part of the dataset can be used to produce the second baseline, a supervised 
trust classifier. Each respective interaction window was covered with human annotators based 
on which levels of trust were indicated through observed behaviour (low, medium or high). 
The classifier is based on behavioural characteristics, predicts the level of trust, and changes 
the system's response. Although working nicely on controlled settings, this approach is time-
consuming and poorly scalable, particularly in areas where trust relationships will vary over 
time or where the data is unlabelled. 
The third baseline is a reinforcement learning (RL) agent, which learns to maximise the user-
defined rewards (e.g., successful task completion, low frequency of clarifications). The RL 
agent does not, however, have a trust modelling layer and acts on outcome optimisation only. 
This usually leads to brittle behaviour where the agent cannot make sense of subtle cues of 
trust, which results in poor decisions in grey and new cases. 
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Evaluating TA-SSL in contrast with these baselines helps define the values that self-supervised 
trust inference and adaptive modulations of behaviour based on latent trust dynamics bring. 
4.4 Experimental Protocol 
The protocol adopted during the experiment was intended to make a fair, complete, and 
duplicable assessment of TA-SSL. We used a 5-fold cross-validation strategy, which splits the 
dataset at the level of session to avoid data leakage. The fold was used as the test set, and the 
other four were used as the training set. This ensured the model was subjected to various user 
behaviours as it iterated. 
TA-SSL was trained with the Adam optimiser, learning rate of 0.001, the embedding dimension 
of 128, and contrastive loss temperature of 0.07. The behavioural features were individually 
neutral concerning the users and analysed in five dialogue turns. Training was done for 20 
epochs in the model per fold, stopping beforehand based on trust calibration convergence. 
A thorough ablation study was carried out to determine the relevance of architecture 
components. Once the contrastive loss was stripped, the embedding coherence and trust 
calibration plummeted, which proves that temporal self-supervision is essential. The loss of the 
behavioural characteristics worsened the model's discrimination of the trust trajectories, and 
the alternatives, including replacing the random embeddings, showed no added advantage as 
compared to the static ones. These findings agree that the represented trusts that are learnt 
possess meaningful behavioural and cognitive data. 
The study visualised the trust embedding space with t-SNE and PCA to collect qualitative data. 
The visualisations revealed different clustering patterns of the high-trust and low-trust states, 
where transitions between time points in the same user session occur smoothly. These trends 
also confirmed the interpretability and reliability of the acquired trust embeddings. 
5 Results and Analysis 
This section presents the quantitative and qualitative analysis concerning the proposed TA-SSL 
framework and the comparison to the baseline methods. The study discusses the enhancement 
in core performance metrics, interpretability of the learned trust embeddings, the dynamics of 
trust development over sessions and behaviour of the system in different user interaction 
settings. These findings establish that TA-SSL delivers a substantial performance improvement 
in the success rates of tasks, the number of unneeded clarifications, and a closer matching with 
the implicit user trust tendencies, which proves its potential to self-learn trust dynamics in a 
domain-generalist way. 
5.1 Quantitative Outcomes 
TA-SSL was compared quantitatively to three baseline models: static (non-adaptive) agent, 
supervised trust classifier and the agent based on reinforcement learning (RL). Three main 
evaluation measures were used in this case analysis, which included task success rate, 
clarification rate, and trust calibration score, which are summarised in Table 1. 
Table 1: Performance Comparison of TA-SSL and Baseline Models 
Model Task Success 

Rate (%) 
Clarification Rate 
(%) 

Trust Calibration 
(Pearson r) 

Static Agent 65.2 29.4 0.18 
Supervised Trust 
Classifier 

71.8 24.1 0.42 
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Reinforcement 
Learning Agent 

74.3 21.7 0.51 

TA-SSL (Proposed 
Framework) 

88.6 17.1 0.76 

 
TA-SSL has a task rate of success of 88.6%, and it has improved the static agent baseline of 
+19.3%, also outperforming the supervised classifier (71.8%) and the RL agent (74.3%). This 
shows that trust-sensitive adaptation allows better interactions in which users are more likely 
to achieve their desired objectives. Being able to customise its responses based on the estimated 
level of trust, the model can predict the needs of users, eliminate cases of misunderstandings, 
and decrease friction, all to facilitate the flow of the dialogue and improve results. 
The clarification rate, an indirect measure of trust, was also very low in TA-SSL. The model 
had a clarification rate of 17.1, which represented a decrease of -24.6% compared to the static 
agent (29.4%). This decrease implies that the TA-SSL users had fewer communication 
breakdowns, were more confident with the AI proposals, and required minor or no follow-up 
or details. 
Most prominently, the trust calibration score and the Pearson correlation between the trust 
embedding norm and satisfaction measures (e.g., the length of the session and absence of 
reversals) increased significantly. TA-SSL demonstrated a correlation of 0.76 as opposed to 
only 0.18 in the static agent and 0.42 in the supervised classifier. This confirms the theory that 
latent trust representations, learnt using temporal contrastive learning, can highly reflect 
changes in user attitudes, without trust labelling. 
The line graph of Figure 3 shows trust trajectories of three users in ten dialogue turns. Trust 
score is calculated with each turn based on the learned embedding and normalised to make it 
visualised. The three users show a smooth trend of upward movement, a characteristic of the 
model that captures positive results of the interaction feedback, and readjusts its strategy. These 
findings support the belief that TA-SSL builds on time-consistent trust dynamics such that the 
agent can react according to the user's confidence. 
Figure 4 proves the discriminative nature of trust embeddings via the PCA-based visualisation. 
The three trust bands, low-moderate, moderate, and high, group together and point to the 
model's ability to learn to separate meaningful variations in the latent space. Such clustering 
allows scalable customisation and regular response scaling since distinct users similar in trust 
profile receive equal treatment in the system. 
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Figure 3: PCA Cluster 

 
Figure 4: Trust Trajectory Over Dialogue Turns 
5.2 Cross-Session Consistency 
A great attribute of a trustworthy trust modelling framework is that it is consistent within a 
series of sessions of the same user. To confirm this, we examined the variance of the 
embeddings of a given trust across different interaction sessions of the same user. These 
findings showed that TA-SSL successfully learns personalised trust profiles, which are less 
variable across different iterations of the same user. 
Practically, this implies that when any user tends to behave according to the aspects of trust-
indication, e.g., by responding fast, by not often requesting clarifications, or by not being 
adversarial with suggestions, such a tendency will be caught by TA-SSL and will be mirrored 
in a consistent high-trust embedding. The system can initialise its strategy correctly even in 
new sessions, given information on previous dynamics of trust, regardless of cold, hard 
annotations. This stability is helpful when using the framework in longitudinal settings, e.g., 
virtual health coaches or productivity agents that work over weeks or months, and in which 
trust needs to be maintained over long periods without re-establishment. 
5.3 Case Study Examples 
The study provides a pair of representative case studies of interaction cases in the test 
parametric dataset to exemplify how TA-SSL changes its behaviour according to inferred trust. 
In Dialogue A, the user has a negative attitude toward the AI agent. The initial reaction of the 
users is low (high hesitation), and then a clarification question comes along: “Can you tell me 
how this can help me? TA-SSL will recognise such a situation as a low-trust state and explain 
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itself, provide examples, and summarise the risks that this might pose. The hesitating time 
decreases during the following few turns, and the user continues without additional 
clarification. The trust embedding is continually building up, and the agent slowly transitions 
into terse, purposive suggestions. In this session, the session ends in accomplishing the task, 
which demonstrates how trust-adaptive modulation enhances experience and outcome. 
In dialogue B, we begin with a user who hesitates and utters a conflicting command sequence. 
Once the appointment time is suggested, the user cancels it instantly and repeats, asking to 
reserve a different slot. TAS-SSL classifies this behaviour as one with uncertainty and mistrust. 
To this, the agent also provides several choices, explains the times selected, and has the option 
of overriding. This subtle treatment brings the user back, and to finish the action, he picks a 
time and does the thing. Without the trust adaptation, the static agent could have kept on with 
his assumptions, which probably would have led to more confusion or the session being 
aborted. 
These are just some of the implications of trust-aware behaviour: decreasing the number of 
interruptions, easing mistrust event recovery, and achieving more user satisfaction. 
5.4 Error Analysis 
Although TA-SSL performs better than all the baselines, failure examples demonstrate that this 
strategy needs further work. 
A limitation observed when dealing with sarcasm or subtle irony is that there tend to be 
behavioural indicators of clarification or reversals. Yet, the intention is to be playful or ask a 
rhetorical question instead of actual distrust. An illustration was that of a user typing, “Oh 
super, all I needed was another reminder”, and does not respond after that, as it was classified 
as a low-trust case. This would imply the necessity of sentiment-sensitive behavioural 
modelling, which may require the determination of sarcasm in the element sentence layer. 
Another issue arises with unclear follow-up questions. When users update users with distorted 
clarifications (Can you do it better? or try something), the absence of contextual firming 
obstructs the interpretation of the relation of trust. Such interactions can be enhanced by 
dialogue context expansion, which facilitates TA-SSL to arrive at the user's intent, taking into 
account the system's past behaviour. 
Lastly, multi-user sessions (e.g. shared interface or group chats) are troublesome. This model 
presumes just one user trust path per session. The embedding produces noise when various 
users participate in overlapping turns, some of them in a trusting way, some in a non-trusting 
way. This should be resolved through speaker attribution and multi-agent segmentation, which 
is outside the bounds of the present study but far in the future. 
6 Discussion 
The findings of this paper support the central hypothesis that human trust may be successfully 
simulated by using self-supervised learning to harness implicit cues in dialogue. TA-SSL has 
also introduced a new learning paradigm of learning representations of trust without any direct 
supervision and has shown an ability to achieve clear task performance improvements and 
alignment to human trust dynamics. In this section, we place our findings in the wider context 
of the literature on trust modelling, representation learning and adaptive human-AI interaction. 
Our data support the psychological opinion presented long ago that trust should not be viewed 
as a binary virtue but rather as a time-bounded construct. As opposed to the traditional systems 
based on the factors of static trust indicators or subjectively rated, TA-SSL facilitates trust as a 
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trajectory, a linear development of trust-related cues. Such temporal modelling of trust is 
straightforwardly backed up by the high intraclass (intra-user) trust coherence that we 
measured in our trust embeddings, as well as by the work by [23], where they observed that 
trust is gradually built and undermined concerning system behaviour and contextual 
responsivity over time. 
Relatively, the previous research on explainable AI (XAI) (e.g., [24]) pointed out that user trust 
could be built by explaining and being transparent. Such methods, however, tend to be reactive, 
i.e., they will only explain when asked or when the level of confidence has been reached. 
According to our findings, more proactive measures that allow us to be proactive, like TA-SSL, 
result in greater alignment of users. TA-SSL does not wait until trust has broken down but 
gauges the user's confidence level on the fly based on their behaviour and gives its responses 
in an adaptive style in real time. This agrees with more recent arguments in human-centred AI 
that continuous trust calibration should be the preference over explanations after the fact. 
Unlike supervised trust classifiers, which rely on explicitly labelled trust data, TA-SSL does 
not depend on such labels and can learn purely based on behaviour. The latter presents utility 
over models such as those suggested by [25] that were trained on human-labelled confidence 
values, but were restricted to a small scale and susceptible to annotator bias. Our findings 
indicate that the self-supervised embeddings that TA-SSL generates outperform these 
supervised models not only in calibration quality but also in domain and user generalisation. 
Extending contrastive learning to TA-SSL thus reapplies semantic sentence similarity-oriented 
learning methods, such as SimCSE, to affective and behavioural representation learning. Our 
approach fits at the border between representation learning and affective computing because 
we adapted contrastive goal objectives to behavioural cues, and Latent cognitive states, such 
as trust, are captured. Our embedding space structure, illustrated in the PCA clustering, 
indicates there is still an opportunity to utilise our embeddings to enable downstream 
personalisation considerations (i.e. user profiling, adaptive tutoring or conversational style 
matching). 
Although the system performed well for most users, limitations remain. TA-SSL cannot yet 
represent emotional specificity, including sarcasm, and presupposes a single-user interaction 
scenario. These problems echo the warning of the previous work in the area of dialogue trust 
modelling, where shallow, simplistic heuristics were the main warning sign [26]. Potential 
advancements to TA-SSL may involve including multimodal trust indicators (such as voice 
tone, eye gaze, and sentiment) or federated learning algorithms to provide the training without 
compromising users' privacy when training with larger groups of people. 
The study adds to the emerging research laboratory that argues for the need to introduce 
adaptive and trust-sensitive AI. The principal novelty of TA-SSL is that it attempts to solve the 
problem of unsupervised modelling of human trust that builds representations of real-time 
behavioural evidence and provides a promising step in the direction of trust-sensitive and user-
friendly AI. This study has expanded previous belief systems about trust and modelling 
methodology and laid the foundation for more socially-aware and sensitive artificial 
intelligence applications. 
7 Conclusion 
Trust-Aware Self-Supervised Learning (TA-SSL) is a new framework introduced in this study, 
learning to model implicit human trust in conversational AI systems with self-supervised 
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learning of behavioural signals. In contrast to existing trust modelling methods that typically 
need annotated data or are reactive to people and organisations, TA-SSL does not require any 
trust labels and can learn latent trust embeddings based on features including hesitation, 
clarification requests, and action reversal. The AI agent is then dynamically scaled to respond 
to the adjustment of user trust by changing partially the level of explanation, autonomy, and 
control. These embeddings are used to dynamically adapt the behaviour of the AI agent in real 
time. 
The empirical findings on a varied conversational corpus reveal that TA-SSL drives success 
rates in tasks to higher levels (+19.3%), discourages unneeded clarifications by lowering them 
(24.6%), and yields a high trust calibration score (Pearson r = 0.76) when compared to the 
methods of the static models and the supervised failure. Moreover, the trust embeddings show 
significant levels of temporal coherence and between-user discriminability, which confirms the 
model's validity in its capacity to model psychological dynamics of trust. Case studies shed 
even more light on how the system modifies behaviour in advance, reestablishing user trust or 
focusing on goal-oriented interactions when necessary. 
Combining the benefits of human-centred AI design and representation learning, TA-SSL 
complements a significant challenge of AI-human collaboration: systems' potential to 
implicitly and adaptively recognise trust and respond to it. This makes TA-SSL an exciting 
framework for many areas involving sensitive trust, such as triaging healthcare systems, 
providing financial advice, and using team robots. 
Future studies would like to generalise TA-SSL to support multimodal trust hints (voice tone, 
gaze, sentiment) and assess it in deployment environments. Our experiments will also consider 
federated learning extensions to maintain the users' privacy and extend the trust models to 
wider populations. Ultimately, TA-SSL contains a way towards more emotionally intelligent, 
adaptive, and trustworthy AI systems that align with human expectations and behaviour. 
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