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Abstract  

Background: All Radiotherapy schedules are designed to maximise tumour control probability 

and minimise normal healthy tissue complications. However, the rapidly growing demand for 

radiotherapy services, coupled with limited resources, poorly scheduled appointments, and 

increasing complexities of cases, is urgently demanding more advanced systems and models to 

optimise the efficiency of radiotherapy treatments around the world. This is further complicated 

by unplanned gaps leading to significant scheduling challenges.   

Materials and Methods: This paper focuses on stochastic processes, system dynamics, and 

artificial intelligence (AI) for radiotherapy scheduling. It utilises a systematic literature review 

concerning scheduling methodologies that embrace Markov chains, Monte Carlo methods, 

queuing systems, and their hybrids. The review sought literature to control patient flow, 

resource control, and adaptable systems.   

Results: Stochastic models were found to promote better utilisation of resources by improving 

patient flow, reducing machine idle time, and enhancing resource utilisation. Adaptive 

scheduling approaches and system dynamic models enable better workforce planning, reduce 

idle time, and minimise the disruptions of various business processes. AI-info trick analytics 

further enhance scheduling accuracy by making arrivals and equipment downtime forecasts to 

refine resource scheduling approaches. Stochastic approaches to system dynamic modelling 

offer a holistic way to solve practical scheduling problems.  

Conclusion: Advanced scheduling techniques, especially hybrid ones, can enhance resource 

allocation and reduce treatment delays for radiotherapy patients. Future studies should focus 

on integrating electronic health records (EHRs) with active patient monitoring to augment 

scheduling accuracy. Such approaches will increase treatment and service delivery efficacy in 

radiotherapy centres through a real-time patient data-capturing model while ensuring that all 

patients receive equally effective treatment.  

Keywords: Radiotherapy Scheduling, Stochastic Modeling, System Dynamics, Artificial 

Intelligence, Patient Flow Optimization.   
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Introduction   

Radiotherapy is a radiation-based cancer treatment that aims at damaging as much cancer tissue 

as possible with minimal interactions with surrounding healthy tissues [1]. It is a core aspect of 

cancer treatment because almost 50% of all patients suffering from any malignant tumour 

undergo it at some stage of their treatment [2]. The central aspect of the radiotherapy process 

is delivering ionizing radiations such as x-rays, gamma rays or even protons to the tumour area, 

where cancer cells will have their DNA molecule cleaved [3]. This improperly repaired DNA 

will hinder cell divisions, causing the targeted cells to die. While normal cells are susceptible 

to damage, they can self-fix more efficiently than malignant ones so that radiotherapy can be 

effectively employed [4]. Treatment schedules must be carefully planned to maximize the 

effectiveness of radiotherapy. Proper timing and dosage are critical, as malignant cells must be 

irradiated at specific intervals that prevent their regeneration, ensuring the best possible 

therapeutic outcomes for patients with various malignancies.   

 
Figure 1: Breast cancer treatment [58]  

Scheduling refers to the allocation of resources to achieve targets and goals. Within the 

radiotherapy workflow, the initial step involves a consultation with the patient, followed by a 

reservation of time blocks for both CT simulations and Treatment delivery [5]. Before actual 

treatment, CT simulation is done, which consists of imaging the region of interest. These 

images reflect the tumour and consider the patient’s health and other concurrent affairs, as well 

as the size and location of the tumour, alongside the parameters of treatment that have already 

been decided [6]. Patients have prioritization based on the urgency of the treatment, in which 

high-priority cases require immediate attention, whereas lower-priority patients can wait for 

days to even weeks. Effectively, scheduling and coordinating the variety of consultations, CT 

simulations, and linear accelerator treatments presents quite a few challenges. The primary 

constraint within treatments is the availability of linear accelerators, which oftentimes results 

in long queues [7]. Other clinics differ regarding treatment protocols, fractionation schemes, 

and scheduling frameworks. A more compelling aspect comes with the variability in the length 

of procedures and patients’ arrival times, which all impact the schedule and make it necessary 

to fluctuate to reduce the burden on resources.  
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Precision regarding radiotherapy treatment schedules should be observed to achieve optimal 

therapeutic outcomes for patients with malignancy. The malignant cells must be irradiated at 

specific intervals that would not allow regeneration [8]. Treatment is delivered in several 

fractions, usually over several weeks, to ensure a sufficient dose to destroy as many cancer cells 

as possible while allowing other tissues to recuperate [9]. However, maintaining proper 

adherence during the schedule is imperative to achieve the intended results of the radiotherapy, 

which is nevertheless unfortunate. The radiotherapy schedule is notoriously difficult to 

organize because several factors must be managed simultaneously [10]. Each patient has a 

treatment plan based on many clinical parameters like the tumour type, size, disease stage, and 

overall patient condition. Moreover, the radiotherapy treatment is usually delivered in several 

fractions over several weeks, each meticulously crafted to give the appropriate radiation dosage 

at the correct time [11]. Thus, patients’ appointments need to be scheduled with the limited 

availability of radiotherapy machines, which are expensive and in high demand. The scarcity 

of machines in most healthcare institutions makes the scheduling even more challenging 

because there are numerous patients with different types of cancers, each of whom has varied 

lengths and frequencies of needed treatments [12].  

Another significant barrier to planning radiotherapy treatment is the interventions of any ad hoc 

disturbance. An equipment breakdown creates idle time for machines and unscheduled 

cancellations of assigned slots. Repair procedures and maintenance activities, which are 

lengthy given the high engineering sophistication of radiotherapy devices, result in treatment 

delays for several patients. Moreover, sometimes, additional conditions treatable with 

radiotherapy use up slots that had already been booked, meaning those patients needing 

immediate attention are prioritized, and the routine work is redone [13]. The need for such 

changes makes logic and reasoning more complicated, as healthcare systems resource providers 

need to find other strategies to alter patient case and appointment schedules that would incur 

delays that are not extended. Effectively addressing these requirements is critical to preventing 

negative implications in treatment outcomes, as there is an optimal number of treatment 

sessions beyond which the system’s effectiveness diminishes.  

Treatment delays impact radiotherapy differently; however, it is an extensively studied issue, 

and one delay can worsen a patient’s outcome. For instance, the studies conducted on head and 

neck cancer patients discovered that a mere 1-week treatment delay resulted in a 2% decrease 

in local control rates [14]. As a result, there is no control of the tumour in the targeted body 

region, which gets increasingly vulnerable to cancerous growth [15]. Such delays are 

concerning for aggressive cancers as even a slight alteration in the treatment regimen can 

considerably impact survival. These factors illustrate the risk of not promptly delivering 

radiotherapy, which stems from scheduling inefficiencies and can cause significant clinical 

consequences. The data indicates that more than five days of interruption during breast cancer 

radiotherapy can cause local recurrence rates to increase by over 20% [16]. This correlates to 

how vital the care continuum is in radiotherapy. With the breaks, the cancer cells might start 

repairing themselves from the radiation damage, which can severely reduce the effectiveness 

of future radiation doses [17]. This might increase the possibility of tumours reappearing, which 

would then increase the need for control measures like surgery or chemotherapy, which further 

aggravates the patient’s care needs. Concerns about these delays’ negative impact are 

heightened because they seek to hinder the primary objective of effective radiotherapy, which 

is to destroy cancer cells while preserving healthy tissues.  
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As a result of treatment postponements and scheduling inefficiencies, desired health outcomes 

are difficult to achieve. The need to formulate advanced models for scheduling radiotherapy is 

of great importance. Hospitals can enhance the distribution of machine time, plan for machine 

breakdowns, and create other plans to minimise delays using mathematical and computational 

models. Models can also be built from real-time data on machine use, patient requirements, and 

potential emergencies, enhancing the scheduling decisions’ reliability to mitigate prolonged 

interruptions [18]. Stochastic modelling has found vast applications in the healthcare sector as 

it improves decision-making and, as a result, deepens one’s proficiency in handling 

uncertainties [19]. In the highly stochastic nature of radiotherapy, where many things are not 

controllable, stochastic models enhance inefficiency in scheduling and patient arrival and 

address many other problems [20].  The application of key stochastic modelling techniques in 

healthcare optimisation is unprecedented, but optimists believe these approaches will lead to 

better organisation and productivity.  

The Markov model is one such method that has been applied extensively for simulating disease 

progression and evaluating the effectiveness of treatments over long periods [19]. Markov 

models function by portraying a system as a set of states, which change based on specific 

probabilities [21]. In radiotherapy, Markov models enable healthcare professionals to estimate 

disease progression at various treatment intervals and assess how different scheduling lapses 

or changes impact the chances of survival [22]. These models are instrumental in oncology for 

treatment planning since they offer a way of estimating and comparing different treatment 

methods and selecting the appropriate one that optimises the patient’s outcome.  

Monte Carlo simulations differ from Traditional stochastic modelling in that random variables 

are incorporated to pull real-world scenarios to evaluate and create many potential situations. 

In radiotherapy, these studies enable one to conduct distinct analyses, such as examining how 

patient attendance, appointment allocations, and equipment availability influence treatment 

strategies' total effectiveness [23]. With these simulations and games, healthcare management 

can run hundreds, thousands, or even millions of simulations to determine the likelihood of 

specific scheduling problems and find the best strategies to deal with the delays [24]. This 

method supports determining the risks to be taken because the decision maker captures the 

scope of minimum delays on the checkup and takes measures to avert the situation [25]. 

Queuing theory is yet another stochastic modelling technique applied extensively in optimising 

service delivery in the healthcare sector, especially in radiotherapy centres [26]. This 

framework relies on mathematics to streamline the flow of patients into a system and out of it 

by using the elements of arrival, service, and departure. In radiotherapy centres, queuing theory 

reduces patient idle time while maximising available resources by effectively scheduling 

appointments and controlling machine usage [27]. Healthcare facilities can study historical 

patient flow data to determine if there are delays in providing treatment and devise measures 

to minimise the congestion. Research has demonstrated that average waiting times in 

radiotherapy centres can be reduced by 67% through queuing theory, significantly improving 

service efficiency [28]. This enhances a patient’s experience and guarantees that treatments are 

carried out within clinically advisable durations to avert adverse effects on the patient’s health 

due to overly deferring treatment [28]. With the application of Markov chains, Monte Carlo 

simulations and other queuing systems integrated into the scheduling of radiotherapy, 

healthcare providers can manage patient uncertainties while achieving better healthcare results.  

System Dynamics captures a magnified view of the mechanics of healthcare operations by 
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modelling many feedback loops and interdependencies in the healthcare system, which can 

often be considered multidimensional [29]. This has been widely used in the healthcare sector 

to study patient flow patterns, use of available resources properly, and compliance with 

treatment regimens. Models of System Dynamics utilize causal loop diagrams to illustrate 

interrelations among core metrics and stock-and-flow diagrams to depict the capturing and 

dispersal of resources [30]. The simulation models based on System Dynamics provide the 

ability to analyze different scenarios and enable healthcare managers to judge the effects of 

varying scheduling methods on the system's performance. Research suggests that system 

dynamics approaches to radiotherapy treatment scheduling can improve patient throughput by 

as much as 85% while minimizing treatment delays [31]. Moreover, System Dynamics 

simulations have been crucial in evaluating radiotherapy workforce planning strategies to 

maximize the active use of radiotherapy staff and facilities.  

The combination of stochastic modelling and system dynamics provides an all-encompassing 

approach to improving the scheduling of radiotherapy by utilizing the best of both methods 

[32]. Stochastic models capture the details of patient inflow, the expected treatment time, and 

the likelihood of equipment failures. In contrast, System Dynamics models capture the holistic 

view of the entire healthcare system [33]. Using these approaches allows healthcare providers 

to set up robust scheduling controls that can respond to uncertainties and reduce disruptions to 

treatment. Other studies confirm that applying a combination of stochastic modelling and 

System Dynamics improves patient flow by up to thirty per cent while enhancing overall 

resource utilization through an increase in efficient treatment delivery [34].   

The performance of radiotherapy scheduling has also greatly benefitted from implementing 

hybrid models that combine stochastic and System Dynamics approaches. Hybrid models 

facilitate the creation of adaptive scheduling systems capable of real-time treatment plan 

modifications depending on the prevailing clinical situation and resources [35]. Reinforcement 

learning and increased reliance on AI-powered stochastic optimization have improved the 

predictive power of these models and made scheduling modifications more accurate. Recent 

publications have reported the successful deployment of AI-powered stochastic models to 

predict and prevent machine breakdowns, thereby increasing the productivity of the equipment 

and ensuring uninterrupted treatment provision [36]. Undoubtedly, the need for effective 

scheduling services continues to heighten due to the expanding demand for radiotherapy 

services alongside the ease of complexity in treatment regimens. The application of data 

derived stochastic modelling and System Dynamics approaches offers the potential to turn 

radiotherapy scheduling inpatient therapy optimization into a reality, which would invariably 

improve the efficacy of the healthcare system [37]. Such approaches enable healthcare 

managers to create advanced scheduling systems with a proactive approach geared towards 

improving service provision while reducing costs associated with cancer care. Further studies 

should consider enhancing the delivery of radiotherapy services by networked multi-facility 

healthcare systems through further refinements to these models using active patient data.  

This research analyses the uses of stochastic modelling and System Dynamics, especially in 

scheduling radiotherapy. This review aims to determine how these methodologies can be 

synergized to alleviate scheduling and treatment disruptions. The central hypothesis is that 

combining stochastic modelling and system dynamics will significantly improve the decision-

making process in the radiotherapy schedule. This should increase the use of available 

resources, decrease patient waiting time, and improve results. Through real-world study 
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examples and a literature review, this research aims to understand how effective these advanced 

modelling techniques would be in radiotherapy. Healthcare systems must constantly evolve to 

overcome challenges related to uncertainty, resource limitations, and increasing patient 

expectations. Stochastic modelling and System Dynamics are compelling in optimizing 

healthcare operations, such as scheduling radiotherapy. Combining these two approaches 

allows clinicians to design more robust and effective scheduling systems, improving patient 

satisfaction and overall health outcomes. Existing studies have shown that the effectiveness of 

the systems can be enhanced, machine idle time reduced, and patient satisfaction increased with 

the application of these techniques in radiotherapy scheduling. This research will address the 

knowledge gap in optimizing healthcare services by exploring the application of stochastic 

modelling and System Dynamics in radiotherapy scheduling for their clinical practice adoption.  

 

Theoretical Foundations  

Markov Decision Processes (MDPs), queuing theory, and Monte Carlo considerations are 

radiotherapy scheduling models whose mathematical formulations have laid a fundamental 

basis upon which healthcare delivery can be optimized [38]. Non-specialists might have 

difficulty understanding how relevant they are in clinical situations. To sort this out, important 

theoretical terms should be related to practice. For example, in MDPs, the discount factor 

(gamma) is essential because it balances short- and long-term decision-making well. A small γ 

focuses on short-term clinical realities, like the requirement to support high-priority cancer 

patients. In contrast, a large γ captures the long-term significance of system efficiency, such as 

reducing the number of treatment delays [39]. This definition fills the scholastic vacuum 

between theoretical optimization and its practical sequencers in hospitals.  

  
Figure 2: Conceptual framework   
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In addition, the synergy of stochastic modelling and System Dynamics (SD) is essential in 

comprehending the entire spectrum of radiotherapy scheduling solutions. Queuing systems, 

Monte Carlo simulations, Markov chains, and other stochastic models are most suitable for 

making operational judgments in imperfect conditions [40]. They manage volatile situations 

such as patient no-shows, random treatment lengths and equipment outages, allowing them to 

allocate resources responsively based on data.  

Conversely, System Dynamics is superior at analyzing structural and higher-level policy 

problems by modelling feedback loops and long-term trends. For example, SD can directly 

show how bottlenecks in the treatment process run along delayed recruitment or budget 

limitations over time. At scale, these methods can combine to become hybrid approaches, which 

provides an even more considerable advantage: immediate variability is handled by stochastic 

manipulation, whereas SD considers the context of the system [41]. Hybrid approaches are 

better than single approaches for short-term turmoil and long-term structural inefficiency. To 

go deeper in improving scheduling, AI, especially Reinforcement Learning (RL), has 

demonstrated desirable outcomes. A case presented a good example at Memorial Sloan 

Kettering Cancer Center; RL algorithms were used in planning radiotherapy [42]. This 

historical-based patient and treatment modelled systems could increase treatment duration 

prediction rate by 25% to 87% and assign time slots and equipment better. This minimized 

patient waiting time and boosted throughput and overall patient outcomes. These frameworks, 

stochastic modelling, System Dynamics, and AI, can be combined to provide the complete 

radiotherapy scheduling toolset. When combined, their respective use can improve the 

reliability of operations and the robustness of cancer care delivery strategies at large, eventually 

advancing more streamlined, fair, and efficient care routes.  

 
Figure 3: Radiotherapy scheduling system  
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Materials and Methods  

In this research, the author uses the systematic literature review methodology to explore 

dynamic systems modelling and stochastic modelling techniques that have been applied to 

optimise the delivery of healthcare services and, specifically, how they have been used in 

scheduling radiotherapy. The review protocol was set to assure transparency, methodological 

rigour and reproducibility following the PRISMA guidelines (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses). The general objective is to synthesise the studies' 

trends, innovations, and performance outcomes to determine the best practices and inform 

future research. 

  

Database and Search Strategy  

Four scholarly databases, including PubMed, IEEE Xplore, ScienceDirect and Google Scholar, 

were used to conduct the literature search. Structured Boolean methodology was applied, which 

involved the combination of various terms such as stochastic modelling, system dynamics, 

healthcare optimisation, radiotherapy scheduling, queuing theory, Monte Carlo simulation, 

resource allocation, and patient flow management. These keywords have been selected to 

include theoretical models and applied frameworks in healthcare operations. The articles 

retrieved were restricted to articles published only in 2019-2024 to ensure that they reflected 

the current developments in the use of hybrid and the application of AI-based approaches. 

Peerreviewed journal articles and conference proceedings were only considered, as they are 

more on the academic side and of interest.  

 

Eligibility Criteria  

Quality inclusion criteria were established to ensure direct targeting of stochastic or system 

dynamics modelling applications to radiotherapy scheduling or related healthcare operations 

and closely related topics. Studies considered eligible were required to exhibit objective results, 

e.g. reductions in waiting time, machine utilisation, enhancement of therapy efficiency, etc., 

and simulation-based empirical processes, including queuing theory, Markov process or 

agentbased modelling [43]. The exclusion criteria excluded those studies that only described 

healthcare optimisation abstractly, did not have practical applications, or were not published 

earlier than 2019. Articles that did proportional economic analyses and not on the operational 

efficiency were also reduced, as well as purely theoretical papers that failed to mention the 

validation of the models or empirical tests.  

 

Selection and Data Extraction of Study  

All the titles and abstracts were later screened by a panel of eight reviewers independently 

against the eligibility criteria after removing the duplicate titles. The articles that survived this 

first sieve were reviewed in full text to check their relevance and merit in the methods applied. 

When there was a disagreement, then decisions were reached by group discussion. In cases 

where a conciliatory decision could not be arrived at, then the third-party reviewer consulted 

would provide an objective solution. The PRISMA flow diagram (Figure 1 in the complete 

report) gives an overview of the search and inclusion process to put the magnitude of the review 

into perspective.  
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Evolution of Methodologies Over Time  

One of the trends revealed in the literature is that the methodological approach to radiotherapy 

scheduling has evolved over the last twenty years. Between 2000 and 2010, the most popular 

models were purely stochastic, including queuing theory, Markov chains, and Monte Carlo 

simulations. These methods concentrated on unpredictability and volatility in patient arrival 

times, resourceտ grooming, and treatment times, providing detailed control of operational 

processes. From 2010 to 2015, the period marked a more focused approach to System 

Dynamics (SD) modelling, which sought more system-wide views on healthcare bottlenecks, 

feedback loops, and policy implications.  

By 2015, researchers had started combining the two approaches, and hybrid models were 

developed that could be used to capture short-term variability and long-term system structure 

at the same time. Since 2020 and until 2025, AI-enhanced methods have been developed, such 

as reinforcement learning, predictive modelling, and real-time scheduling systems based on 

machine learning [44]. Historic-based models use historical data to give adaptive solutions that 

can react to real-time alterations in clinical conditions. Figure 2 (Methodological Timeline) 

displays the chronological development of such approaches, providing insight into the visual 

development of the discipline towards more intelligent and responsive optimisation 

frameworks.  

 
Figure 4: Transition of Radiotherapy scheduling  

Comparative Analysis Methodology  

Considering the variety of the metrics available in the chosen studies, which summarized the 

waiting time of patients to machine idle rates and treatment throughput, an explicit 

standardization procedure was required to provide any comparison of the studies. First, 

  



  

International Journal of Innovation Studies 9 (1) (2025)  

  951  

normalized outcomes were calculated using Z-scores and percentage change of baseline to 

compare results obtained in different units (e.g., minutes, hours) and based on a standardized 

scale [45]. To illustrate, a 20% decrease in patient wait time and a 10% increase in throughput 

may not form a very small or large effect size but could be usefully compared by computing 

the effect size.  

Where a study employed incompatible metrics, unit conversion formulas were used to compare 

measurements. For example, the time it may take to be delayed was reported in days, which 

were translated into hours based on average clinic operating hours to capture the equipment 

utilization rate [46]. In cases where quantitative conversion has not been possible, three 

healthcare operations experts were selected to independently review and rate the effects of the 

intervention on a standardized 5-pt scale, given the clinical relevance, operational feasibility, 

and all the reported outcomes.  

A weighted aggregation formula was ultimately applied to generate a compounding score for 

each study. This expression placed a 60% weight on normalized quantitative data, a 30% weight 

on expert panel ratings, and a 10% weight on methodological rigour (e.g., the size of the sample 

and simulation fidelity). The mixed method enabled a consistent, even, and open weighting of 

different studies—the ones that provided the most feasible and scalable solutions to 

radiotherapy scheduling.   
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Figure 5: PRISMA flowchart   
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Table 1: Summary Table 

Reference Title  Aim Research 

Design 

Method Findings Limitations 

[47] Simulation-

based 

approximate 

policy iteration 

for dynamic 

patient 

scheduling for 

radiation 

therapy 

Develop a 

simulation-

based 

approximate 

policy 

iteration for 

dynamic 

patient 

scheduling in 

radiation 

therapy. 

Quantitative 

modeling and 

simulation 

approach 

Markov 

Decision 

Process (MDP) 

with 

Approximate 

Dynamic 

Programming 

(ADP). 

The ADP 

approach 

performs 

better than a 

myopic 

heuristic 

decision rule 

in 

scheduling 

efficiency. 

MDP approach 

struggles with 

large state 

spaces, 

requiring 

approximation. 

[48] A mathematical 

programming 

model for 

optimizing the 

staff allocation 

in radiotherapy 

under uncertain 

demand. 

Optimize the 

allocation of 

radiotherapy 

technologists 

under 

uncertain 

demand using 

a stochastic 

mixed-integer 

programming 

model. 

Quantitative 

optimization 

and 

simulation-

based research 

design 

Stochastic 

Mixed-Integer 

Linear 

Programming 

(MILP) using 

real patient 

data. 

Optimized 

staff 

allocation 

increases the 

percentage 

of patients 

meeting 

waiting time 

targets by up 

to 10%. 

Limited by 

data 

availability 

from a single 

institution; 

generalizability 

needs further 

testing. 

[49] A Prediction-

Based 

Approach for 

Online 

Dynamic 

Appointment 

Scheduling: A 

Case Study in 

Radiotherapy 

Treatment. 

Propose a 

prediction-

based 

approach for 

online 

dynamic 

radiotherapy 

scheduling. 

Quantitative 

modeling and 

machine 

learning-based 

research 

design 

Regression-

based model 

trained on 

patient arrival 

patterns and 

scheduling 

decisions. 

Prediction-

based 

scheduling 

reduces 

overdue 

treatments 

for 

emergency 

patients and 

optimizes 

resource use. 

Dependent on 

training data 

quality; does 

not account for 

unexpected 

large influxes 

of patients. 

[50] Simulation-

based 

optimization of 

radiotherapy: 

Agent-based 

modeling and 

reinforcement 

learning. 

Mathematics 

and Computers 

in Simulation 

Develop an 

agent-based 

model and 

reinforcement 

learning 

optimization 

for 

radiotherapy 

dose 

calculation. 

Computational 

modeling and 

optimization 

research 

design 

Agent-based 

simulation of 

tumor growth 

combined with 

Q-learning 

reinforcement 

learning. 

Optimized 

fractionation 

schedules 

improve 

tumor 

treatment 

effectiveness 

with 

minimal side 

effects. 

Model assumes 

perfect 

knowledge of 

tumor growth 

parameters; 

real-world 

variability may 

impact results. 

[51] Utilizing online 

stochastic 

optimization on 

scheduling of 

intensity-

modulate 

radiotherapy 

therapy 

(IMRT). 

Utilize online 

stochastic 

optimization 

for scheduling 

intensity-

modulated 

radiation 

therapy 

(IMRT). 

Quantitative 

optimization-

based research 

design 

Mathematical 

modeling with 

online 

stochastic 

optimization 

and genetic 

algorithms. 

The 

scheduling 

model 

improves 

patient flow 

and reduces 

waiting 

times based 

on real 

clinical data. 

Computational 

complexity of 

the genetic 

algorithm may 

limit real-time 

application. 

[52] Strategic level 

proton therapy 

Develop a 

Markov 

Quantitative 

modeling and 

Markov 

Decision 

Optimal 

patient 

Stochastic 

arrival 
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patient 

admission 

planning: a 

Markov 

decision 

process 

modeling 

approach. 

decision 

process model 

for strategic 

proton therapy 

patient 

admission 

planning. 

optimization-

based research 

design 

Process (MDP) 

with an 

aggregated 

model for 

handling 

stochastic 

patient 

arrivals. 

admission 

policies 

balance 

treatment 

session 

allocation 

and 

adherence to 

mix 

restrictions. 

assumptions 

may not fully 

capture real-

world 

variations in 

patient intake. 

[53] Towards a 

balanced 

radiotherapy 

workflow using 

practical 

solutions 

identified by 

field studies 

and 

simulations. 

Propose a 

prediction-

based model 

for online 

dynamic 

radiotherapy 

scheduling 

with 

interpretability 

using SHAP 

values. 

Mixed-

methods 

research 

design 

Regression-

based 

predictive 

modeling with 

SHAP values 

for 

interpretability. 

Prediction-

based 

approach 

outperforms 

flat-

reservation 

policies in 

preventing 

overdue 

treatments. 

Model does not 

explicitly 

handle rare, 

extreme surge 

cases in patient 

arrivals. 

[54] Data-Driven 

Markov 

Decision 

Process 

Approximations 

for 

Personalized 

Hypertension 

Treatment 

Planning. 

Analyze 

radiotherapy 

workflow and 

develop 

scheduling 

tools for 

resource 

optimization. 

Quantitative 

modeling and 

validation-

based research 

design 

Survey, data 

extraction from 

oncology 

information 

system 

(ARIA), and 

simulation 

modeling. 

Custom 

scheduling 

tools help 

distribute 

workload, 

and 

simulations 

aid in 

resource 

allocation 

planning. 

Tool 

evaluation was 

limited to 

Swedish RT 

departments; 

broader 

applicability is 

uncertain. 

 

 

Results  

Radiotherapy scheduling is critical in the efficient treatment of cancer patients. Due to 

increasing cancer incidence, the demand for radiotherapy services continues to rise, requiring 

optimised scheduling approaches that maximise resource utilisation and minimise patient 

waiting times. This thematic analysis synthesises findings from key studies to understand the 

different strategies used in radiotherapy scheduling, focusing on themes such as optimisation 

techniques, patient flow management, and predictive scheduling models.  

 

Optimisation Techniques in Radiotherapy Scheduling  

Optimisation models are fundamental for enhancing the scheduling of radiotherapy sessions in 

a manner that improves the treatment of patients.   

 

Stochastic Models Markov Decision Processes (MDP) and Approximate Dynamic 

Programming (ADP)  

MDPs are a mathematical framework of sequential decision-making under uncertainty, which 

makes them the perfect choice for radiotherapy scheduling. These models specify state, action, 

transition probability, and reward to optimise patient flow better. ADP techniques improve 

MDPs by obtaining value function approximations, reducing computational complexity, and 

supporting real-time decision-making. As studies [50, 55] show, integrating MDPs with ADP 
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leads to improved patient throughput and scheduling efficiency, which results in waiting times 

that are about 10–20% less than those obtained by heuristic methods. Dynamically adjusting 

schedules to patients' arrivals and treatment constraints makes MDPs more adaptable than other 

scheduling models. In addition, ADP can replace deterministic scheduling, which includes 

consideration of probabilistic variation in demand and resource availability. Though 

computational demands remain a challenge, improvements in function approximation and 

policy iteration methods make it possible to deal with these models. Thus, ADP can be used to 

implement MDPs in radiotherapy departments to create more adaptive scheduling frameworks, 

resulting in better patient outcomes and resource utilisation.  

 

Stochastic Mixed-Integer Linear Programming (MILP)  

Radiotherapy scheduling based on stochastic variables is widely adopted by incorporating 

stochastic variables as a MILP-based optimisation technique. The stochastic MILP allows for 

uncertainties about patient arrivals, necessary equipment availability and treatment time. 

Research [51] shows that a 10% increase in patients meeting the waiting time target is possible 

using MILP-based approaches. Nevertheless, these models are computationally expensive on a 

large scale. As often used for complex integer constraints under uncertainty, it increases the 

solution times and decreases the real-world applicability. To cope with the above issue, 

researchers attempted to enhance the computational efficiency through decomposition such as 

Bender’s decomposition and column generation. It has also been observed that the 

computational burden can be reduced through hybrid MILP models combining heuristic 

methods without impacting the solution's quality. Structural MILP can optimise patient 

scheduling and resource allocation to minimise treatment adherence and improve operational 

efficiency for radiotherapy centres.  

 

Genetic Algorithms and Online Stochastic Optimisation  

Genetic algorithms (GAs) are evolutionary optimisation methods that iteratively improve the 

scheduling solutions through mimicry of natural selection. When included in online stochastic 

optimisation frameworks, GAs adjusts dynamically as resource availability and fluctuating 

patient demands vary. The studies [54] suggest that GA-based approaches can cut down the 

machine idle time by up to 15% by designing optimised treatment schedules continuously. GAs 

has these advantages: they can explore an ample solution space without being trapped in local 

optima, and therefore, they are suitable for complex scheduling problems with multiple 

constraints. Furthermore, a scheduling framework based on GA can implement real-time data 

to schedule dynamically in response to unexpected delays or cancellations. A significant 

drawback of GAs is that millions of generations need to be computed; thus, they are 

computationally costly. This, nonetheless, did not prevent hybrid approaches that employ GAs 

together with heuristic or rule‐based scheduling to produce meaningful, practical improvement 

in radiotherapy workflow efficiency and responsiveness. 

  

System Dynamics Models Macro-Level Workflow Simulation  

System dynamics models model radiotherapy departments to simulate the aggregate behaviour, 

i.e. patient queues, resource constraints, and treatment flows. Differential equations for 

analysing the effect of system-wide changes on patient throughput are used for these models. 

Research [31,32] shows that up to 85% improvement in patient throughput is possible if system 
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dynamics are integrated with strategic interventions. System dynamics models use key 

variables such as patient arrival rates, staff availability, and treatment session duration to 

provide insights into bottlenecks that deter efficiency. System dynamics is more appropriate 

than discrete event simulation, which is interested in the trajectories of individual patients for 

policy evaluation, as it allows long-term trends. One application of particular importance is 

testing how wait times would be influenced by a certain degree of increased staffing levels or 

extended operating hours. Nevertheless, the validity of these models depends on the quality of 

the input data and assumptions about the system behaviour. Nonetheless, system dynamics 

offers a valuable method of optimising departmental operations in radiotherapy.  

 

Causal Loop and Stock-Flow Diagrams  

Stock-flow models and causal loop diagrams are essential elements of a system dynamics 

model in the healthcare specialty, as they provide a visual abstraction of how several factors 

interact in a healthcare system. Feedback mechanisms are shown by CLDs, such as how 

delayed treatments cause increased patient backlogs and further increased waiting times. 

Studies of these feedback loops have shown that policymakers can identify and modify them 

to design targeted interventions to deal with systemic inefficiency. On the contrary, stock-flow 

diagrams quantitatively model patients' inflow and outflow through different treatment stages. 

Human resource constraints can be pictured in these diagrams, and a flow can be predicted for 

the outcome when staffing or the availability of machines is altered. These models show that 

resource reallocation strategies based on them can effectively be used to reduce operational 

bottlenecks.  

 

Hybrid and AI-Enhanced Models Predictive Analytics and Reinforcement Learning  

Radiotherapy scheduling adopted advancements in machine learning and used predictive 

analytics and reinforcement learning. Historical patient data is used to forecast demand patterns 

by predictive analytics, so resource planning in the hospital can be done proactively. Beyond 

that, reinforcement learning (RL) arranges the scheduling decisions to be continuously 

improved, using reward-based optimisation via trial and error. Simulation studies are performed 

in studies [52,53] that show that RL-driven models can reduce overdue treatments by 20–30%. 

RL is the key advantage because it can adapt to dynamic environments and is helpful for real-

time scheduling adjustments. Expanding on transparency, additional explain ability tools such 

as SHAP values are embedded to ensure openness, stemming from the black box problems of 

AI models. However, RL has great potential but lacks scalability regarding computational 

requirements and requires a lot of training data. However, with one of these barriers, AI-

enhanced scheduling frameworks are progressively being applied in radiotherapy management.  

 

Quantitative Comparisons  

Difference scheduling models are analysed comparatively, and some advantages of hybrid 

approaches that combine some elements of stochastic modelling, system dynamics, and 

AIembodied design decision-making are discussed. The literature reviews show that the hybrid 

models outperform the single method models by combining the detailed patient-level insights 

from the stochastic model and the macro-level policy adjustments from the system dynamics. 

In the context of a patient scheduling problem, for example, on an individual patient scheduling 

level and system-wide workflow optimisation, agent-based modelling and reinforcement 
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learning can be used. However, such hybrid frameworks have shown impressive reductions in 

patient waits and increases in resource utilisation. On the one hand, stochastic models consider 

uncertainty uncertain but do not provide insight into long-term impacts.  

On the other hand, system dynamics addresses impacts in the long term but lacks precision for 

uncertainty handling. With AI-enhanced methods, scheduling systems are even more 

responsive to real-time fluctuations. As such, future research is expected to aim at integrating 

these models further and, in doing so, achieving a seamless combination of predictive, 

prescriptive, and adaptive decision-support tools in radiotherapy management.  

These observations demonstrate the challenges encountered in trying to enhance operational 

efficiency while maintaining the relativity of advanced scheduling systems to a more practical 

level in radiotherapy (see table 1: Extraction table).  

  

Predictive Scheduling Models and Machine Learning Predictive Analytics and 

Reinforcement Learning  

Recent research [40,41] integrates machine learning and reinforcement learning into scheduling 

systems. In simulation studies, these hybrid models have demonstrated reductions in overdue 

treatments by 20–30%. Explainability tools like SHAP values have been incorporated to 

improve model transparency. One study showed the effectiveness of machine learning-enabled 

scheduling in losing pending treatments for emergency patients without compromising the 

routine patient’s waiting period. Incorporating Shapley Additive Explanation (SHAP) values 

commendably within the scheduling process was able to justify significant SHAP decision 

steps’ importance, thus improving the scheduling transparency considerably [40]. Such 

openness is imperative as stakeholders in the clinical setup need to understand the basis against 

which a particular decision about the schedule should be made. In addition, models of real-time 

changes in radiotherapy scheduling were enhanced by supporting machine learning-powered 

prediction models. These models changed the scheduling policies automatically based on 

patient flow volume and available resources, resulting in better management of overdue 

treatments and optimal capacity utilisation. This new model did outperform the traditional flat-

reservation policies, which poorly met patient demand in tandem with available resources. A 

significant limitation, however, is that it could not incorporate some rare cases of surge 

attendance where patients attended more than the advanced scheduled appointments, reducing 

planning efficiency [40]. This evidence indicates the prospects for using predictive analytics in 

radiotherapy scheduling while emphasising the additional modifications needed to deal with 

practical complexities.  

 

Quantitative Comparisons  

A literature synthesis indicates that hybrid models can outperform single-method approaches 

by combining the detailed patient-level insights of stochastic models with the macro-level 

adjustments of system dynamics. For instance, agent-based models combined with Q-learning 

[41] provided improved dose fractionation schedules that align with clinical guidelines while 

adapting to real-time changes. The model reflected the dynamic nature of a growing tumour, 

including the fractionation schedule that maximally destroyed the tumour and minimised 

damage to healthy tissue. The model and treatment planning that used reinforcement learning 

in battle strategy proved to be more accurate in the adjustment of radiotherapy doses for the 

tumour. The primary drawback, however, was the theoretical assumption that parameters 
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control tumour growth completely. Indeed, there is always some uncertainty in clinical practice. 

The heterogeneity in tumour response and other patients’ factors makes it extremely complex 

to expect a purely deterministic approach [41].  

 

Patient Flow Management and Resource Allocation  

Adaptation of adequate patient flow ensures minimal delays and maximum use of the 

radiotherapy equipment. Several optimisation frameworks have been provided to improve the 

scheduling and allocation of resources. One such model is an aggregated Markov Decision 

Process (MDP) framework, which focuses on strategic proton therapy patient admission 

planning. Given the strict patient mix constraint, this model was created to evaluate the 

effectiveness of admission policies in treatment session allocation. The authors showed that 

scheduling efficiency was greatly enhanced by the modified admission policies that rationally 

allocated patients to a treatment facility and resources [43]. However, the model emphasised 

resource allocation and patient scheduling efficiency. Still, a major restraint that could impact 

actual practice was the patient arrival patterns, which were quite complex.  

In another study, radiotherapy workflow optimisation in Swedish departments was focused 

upon, specifically concerning the scheduling and the usage of simulations. The results 

underscored the need for innovations in developing scheduling software and managing 

workflow disruptions from frequent interruptions. Using the analysis of scheduling distortions, 

the study proposed an innovative method for improving patient flow, which comprises starting 

preparatory radiotherapy activities one to two weeks before the actual phase of treatment. The 

strategy was intended to reduce workflow interruptions and improve operational efficiency in 

radiotherapy departments [45]. Although these results provide important considerations 

concerning the planning of the scheduling mechanisms, the most significant concern regarding 

this category of studies is that they have been concentrated only within the context of Swedish 

radiotherapy departments. That singular focus is problematic because it challenges the 

applicability of the recommendations to other healthcare systems that operate in constricted 

parameters and possess different patient flow patterns. These studies have also pointed out the 

gaps in the modern-day planning of radiotherapy and coping with the challenges of high patient 

volumes that force implementation delays. On the other hand, they highlight the challenges 

brought about by actual practice, especially those dealing with complicated patterns of patient 

admissions and the application of varying healthcare systems.  

  

Discussion   

The study’s findings reveal important themes regarding optimisation techniques, patient flow 

management, and predictive modelling in radiotherapy schedules. Scheduling using MDP and 

ADP has worked well but has shortcomings. The MDP models solve approximations, which 

could, in turn, lead to inaccuracies [55]. Many studies have addressed this problem of 

computational feasibility versus optimality in scheduling models [56].  It has been noted that 

the advantages of modelling stochastic techniques using genetic algorithms approaches require 

many computational resources. It has also been pointed out that the adapting nature of 

healthcare settings has tremendous power that is thwarted due to constraints like insufficient 

data and tedious, time-consuming processing [57]. It can be inferred that the unexplored area, 

which inadequately addresses real-world constraints vis a vis stochastic optimisation in clinical 

practice, is bound to face issues.  
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Regarding MDP usage in patient flow management and its admission planning, it is notably 

relevant to proton therapy [58]. It is clear, however, that other more adaptive methods, like 

reinforcement learning, could be helpful. Claims about the capabilities of Q-learning 

concerning radiotherapy dose fractionation optimisation corroborate this. Unlike traditional 

stochastic models, Reinforcement learning permits continuous changes to real-time scheduling 

algorithms that are appropriate for a given level of patient care, which makes them ideal for 

most functioning hospitals [59]. As has been the case with other machine learning applications 

in medicine, reinforcement learning can enable the design of more responsive and non-linear 

patient scheduling systems.  

Real-world workflow problems provide helpful information, especially regarding staff 

scheduling during rush hours. It also suggests that human elements should be incorporated into 

scheduling models [60]. Incorporating qualitative data from healthcare professionals makes 

optimising workflows more effective and applicable to real-world scenarios. Unlike machines, 

scheduling staff entails additional considerations such as fatigue and understanding the morale 

of the staff, some of the most taken-for-granted factors in mathematical optimisation models 

[61]. Furthermore, adding human components to scheduling enhances overall effectiveness and 

makes adherence to scheduling guidelines more likely, as pointed out by studies focusing on 

the hospital workforce. In terms of scheduling radiotherapy, the introduction of predictive 

scheduling models is a new development. These regression-based models are applied to 

historical datasets to create schedules that can dynamically respond to changes. Unfortunately, 

machine learning models are prone to problems with data and quality control; they struggle 

with high-impact rare events like surges of patient arrivals [62]. This issue is highly publicised 

in the machine-learning world. The phenomenon where a model based on complete historical 

data has been trained on outliers tends to create desperate problems for the model [63]. Hybrid 

models, with machine learning-based components along with rule-based scheduling 

techniques, can be used to mitigate these issues.  

The literature indicates the most promising strategy for radiotherapy scheduling is the use of 

hybrid approaches that combine optimisation techniques with predictive modelling. For 

example, MDP using reinforcement learning or stochastic models combined with machine 

learning may provide stronger and more flexible scheduling systems [64]. Using these methods 

in conjunction will benefit both optimisation and predictive modelling because optimisation 

models can aid in structuring decision-making. In contrast, machine learning models provide 

flexibility and the ability to learn and adapt in real-time. Hybrid models are handy when 

addressing uncertainty and variability in patient demand. Traditional optimisation models like 

MILP and MDP come with set constraints and assumptions that are rarely actual in a dynamic 

hospital environment [65]. However, machine learning models, especially reinforcement and 

deep learning, are more easily tailored to changes in patient demand, as seen in AI healthcare 

decision-making systems.  

Nonetheless, some barriers hinder the effective implementation of hybrid models. One of the 

primary issues is the strain on computing resources posed by the amalgamation of multiple 

sophisticated approaches. The peripheral requirements of reinforcement learning on big data 

sets are substantial, and therefore, implementation within health institutions, especially under 

resourced ones, may not be possible. Besides, these models are too complex to be easily 

interpretable. Several machine learning algorithms that work as deep learning-based 

reinforcement learning suffer from a lack of transparency. This can pose a problem for 
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healthcare professionals in understanding the reasons for specific scheduling choices. 

Therefore, there has to be a focus on explainable AI methods so that healthcare professionals 

can authenticate the recommendations and check the logic behind the suggestions of AI-based 

scheduling.   

Besides these, hybrid models are needed to maximise the efficiency of radiotherapy scheduling. 

Further work should aim to improve the clinical applicability of such models with improved 

efficiency, easier understanding, and low computational resources. Moreover, randomised trials 

coupled with pilot studies should take the lead step towards the clinical applicability of the 

model. Additionally, incorporating contemporary data from hospitals, electronic health records, 

and artificial intelligence can make this model more versatile and usable in various clinical 

situations.   

 

Clinical Applications  

Improvement of radiotherapy schedules can start with the single-facility level, where the 

capacity planning, inflow of patients, and machine time are handled locally. Theoretical models 

are effective when applied in a simulated context; however, real-world examples are more 

persuasive [66]. One good example is the case of a supervised oncology hospital in Canada, 

where a queuing-based stochastic model into a real-time scheduling dashboard achieved 

quantifiable benefits [67]. The present case demonstrates how intelligent scheduling can be 

transformative even in an individual institution by applying historical data and using adaptive 

algorithms.  

Conversely, scheduling of multi-facility coordination of radiotherapy adds a different aspect of 

complexity. It requires harmonisation of systems different from hospitals, diverse kinds of 

equipment, clinical practice, and patient demographics. Regional optimisation can be illustrated 

using a real-life example in the Netherlands, which has a network of five radiotherapy centres 

[68]. In this case, attempts to optimise capacity and mitigate unequal access outcomes saw the 

implementation of an integrated scheduling scheme aimed at rerouting patients according to 

the availability of machines and travel limitations. Nonetheless, some barriers to 

implementation were experienced despite the region-wide success in minimizing the treatment 

backlog by 12%. Data integration barriers were foremost because all facilities had distinct 

information systems, and HL7/FHIR interoperability standards were the crucial but not the only 

prerequisites without significant IT coordination. There was also the arising of complexities in 

governance since central coordination had to harmonise standardisation and autonomy at each 

facility. Finally, patient preferences, especially treatment in a facility near home, tended to 

conflict with optimal recommendations system-wide [69]. These aspects highlight the 

significance of strong governing structures and patient-related modification of policies in 

scaling the optimisation strategies.  

 

Emerging Trends  

Predictive analytics represents one of the most emerging fields regarding radiotherapy 

scheduling. The recent development includes modelling patient no-shows to help schedule 

inefficiency and resource underutilisation, a significant problem. Elements of feature selection 

in one multicenter study were distance home facility, past no-show experience, appointment 

lead, and socioeconomic characteristics. The very last model was built with gradient boosting 

algorithms, which is much better than the logistic regression baseline; the results show that not 
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only is it beneficial to include detailed patient data in the design for a model, but sophisticated 

machine learning is essential in forecasting operations.  

Irrespective of these developments, several research gaps still need more attention. First, there 

are no common disruption scenarios that can be applied in various studies to compare the 

resilience of scheduling algorithms. Second, the current simulation environment tends to be too 

ideal, leading to not simulating real-life complexity with variable patients, machine downtime, 

and manual overrides [70]. Third, clinicians who access schedules through dedicated user 

interface apparatus often face a lack of balance and web design, which will create friction 

between the model recommendations and clinical uptake. Adaptive user interfaces that devices 

communicate on schedule changes and their underlying rationale should be developed as 

research. Lastly, future research must identify multi-dimensional assessment standards beyond 

accuracy and speed to balance computational efficiency, clinical interpretability, and user 

satisfaction.  

 

Implementation Considerations  

Scheduling optimisation models need a sound technical infrastructure to be effectively 

implemented. These range from retrospective data, ideally 12 months (or more) of historical 

appointment data for training and validation, to real-time data streams updated every 5 minutes 

to allow responsive scheduling changes. It is also essential that it can be seamlessly integrated 

with the existing hospital systems, which are usually 3 to 5 clinical systems, including EHR, 

oncology management, imaging, and scheduling systems, among others. Such systems must 

have HL7 or FHIR interfaces so rollout is not disruptive.  

Nevertheless, technical capacity is insufficient to ensure that successive organisational risk 

factors, especially staff resistance, are addressed. The causes of resistance can be seen as the 

feeling of loss of control, apprehensiveness towards new technology, or uncertainty about the 

transparency of the model. An effectively used five-strategy approach is: (1) including frontline 

staff in co-design, (2) providing appropriate training, (3) retaining override authority, (4) 

piloting then deploying afterwards, (5) and of performance impact.   
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Conclusion  

Effective outcomes in the treatment of cancer and resource utilization require the development 

of new and efficient solutions in radiotherapy scheduling. Scheduling inefficiencies tend to 

have an adverse impact, and even a slight delay in treatment results in a poor prognosis, 

especially in aggressive cancers. Integrating Markov chains, Monte Carlo simulations, and 

queuing theory into patient flow management has significantly decreased machine idle time 

and improved overall resource utilization. These methods help healthcare institutions enhance 

appointment allocations and reduce scheduling bottlenecks. There is also increased flexibility 

with system dynamic models, which enable health service managers to implement adaptive 

frameworks for scheduling that enhance staff and equipment deployment while remaining 

flexible on treatment time. These models allow healthcare providers to appropriately balance 

the demand versus resource availability while ensuring uninterrupted treatment sessions. 

Artificial intelligence and machine learning enhance real-time adaptability, which is also 

something to consider for future improvements. Using Artificial Intelligence, one can predict 

useful information with reasonable accuracy that enhances an organization’s decision. For 

instance, forecasting the arrival of patients, anticipating possible breakdowns of equipment, or 

estimating the best-fit appointments based on the available data can be done. Further studies 

should be directed towards using EHRs with active surveillance for more accurate scheduling. 

The technological approach to effectively solving scheduling problems in radiotherapy showed 

that result-oriented and time-effective multitasking is realistic and attainable without infringing 

on patients’ rights or equal access to essential treatment. Such achievement can potentially 

  
Figure 6: Implementation Plan Roadmap   
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increase the efficiency of radiotherapy services and eliminate the problem of treatment 

procrastination and shortage of resources from these healthcare systems.  

 

Recommendations for Future Research and Practice Integration with EHR and Real-

Time Monitoring  

To make real-time data-driven decisions in future scheduling models, there should be seamless 

integration with Electronic Health Records (EHR). Live patient updates, including change of 

appointment, treatment progress and unexpected delays, can be incorporated by scheduling 

algorithms to improve efficiency [13,18] optimally. This integration would help automate 

rescheduling and redisclosure of missed and delayed appointments based on resource 

availability. This could also make such systems available to monitor real-time inefficiencies, 

track key performance metrics, and give actionable insights to healthcare providers [17]. Such 

systems require substantial improvement in the data interoperability standards between EHR 

platforms and optimization models, as well as robust security measures to facilitate 

communication between the EHR platforms and the optimization models.  

 

Hybrid Model Implementation  

It is a promising avenue towards improving radiotherapy scheduling based on the combination 

of stochastic optimization, system dynamics, and an AI-driven model. Stochastic models can 

deliver precision in terms of the treatment of uncertainties, system dynamics allow the 

treatment of large-scale characteristics at the macro level, and AI improves real-time 

adaptability. These strengths can be combined in a hybrid way, and their weaknesses can be 

offsite so that more robust and flexible scheduling systems can be developed [17,20]. Future 

work should focus on the development of frameworks that marry these methodologies well to 

be scalable and computationally feasible. Hybrid models should also be piloted in clinical 

settings to validate their performance and improve patient care while improving operational 

efficiency [14,16].  

 

Focus on Unplanned Gaps  

Unintended gaps can disrupt radiotherapy workflows, such as room availability, equipment and 

staffing schedules, and lack of continuity in patients’ work schedules and no-shows or 

cancellations. Future research should be more focused on developing predictive algorithms to 

predict such gaps and reassign resources to balance disruptions [18, 19]. Anomalies in 

unplanned gaps can be detected using machine learning techniques such as anomaly detection 

and reinforcement learning. Thus, existing issues can be responsive to prevent these before they 

occur. Also, real-time decision support tools would be required to enable them to efficiently 

reallocate patients or re-distribute workload [10, 28]. To devise these algorithms in practice, 

they need to be validated through simulation studies and clinical trials.  

 

Broader Clinical Validation  

It has been shown that various scheduling models have performed very well in simulation 

studies, but their actual deployment across a wide range of healthcare settings has not been well 

tested. Future research should be expanded to include the conduct of multicenter randomized 

controlled trials (RCTs) to assess a model based on different patient demographics, hospital 
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infrastructure, and workflow constraints [15, 19]. These scheduling approaches could be 

rigorously studied in such trials using empirical evidence on the feasibility, scalability, and 

clinical benefits of such an approach [17, 19]. Qualitative studies are further required to assess 

the degree to which healthcare providers will adopt the models and that the models are intuitive 

and practical. However, it will be necessary to broaden clinical validation to integrate these 

models into standard radiotherapy practice.  

Future research should focus on integrating Electronic Health Records (EHR) with real-time 

monitoring systems to enable adaptive and data-driven radiotherapy scheduling. Developing 

hybrid models combining AI, stochastic optimization, and system dynamics can enhance 

flexibility and predictive accuracy. Emphasis should be placed on forecasting unplanned gaps 

using machine learning to optimize resource reallocation. Pilot testing these innovations in 

clinical settings is crucial to validate their effectiveness. Additionally, broader clinical 

validation through multi-centre randomized controlled trials is essential to ensure feasibility, 

scalability, and user acceptance. Such advancements can significantly enhance patient care, 

operational efficiency, and equitable access to radiotherapy services.  
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